Introduction to CMOS VLSI Design

Lecture 8: Combinational Circuits

David Harris

Harvey Mudd College Spring 2004

Outline

- Bubble Pushing
- Compound Gates
- Logical Effort Example
- Input Ordering
- □ Asymmetric Gates
- Skewed Gates
- Best P/N ratio

assign y = s ? d1 : d0;

endmodule

1) Sketch a design using AND, OR, and NOT gates.

8: Combinational Circuits

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

Compound Gates

Logical Effort of compound gates

8: Combinational Circuits

The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

NAND Solution

8: Combinational Circuits

CMOS VLSI Design

Compound Solution

8: Combinational Circuits

CMOS VLSI Design

Annotate your designs with transistor sizes that achieve this delay.

Input Order

Our parasitic delay model was too simple

- Calculate parasitic delay for Y falling
 - If A arrives latest?
 - If B arrives latest?

8: Combinational Circuits

CMOS VLSI Design

Inner & Outer Inputs

- Outer input is closest to rail (B)
- □ Inner input is closest to output (A)
- If input arrival time is known
 - Connect latest input to inner terminal

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - So total resistance is same

 \Box g_B =

$$\Box \quad g_{\text{total}} = g_{\text{A}} + g_{\text{B}} =$$

reset

- ❑ Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

$$-g_u =$$

 $g_d =$

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- Logical effort is smaller for favored direction
- But larger for the other direction

Asymmetric Skew

Combine asymmetric and skewed gates

- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input

8: Combinational Circuits

CMOS VLSI Design

Best P/N Ratio

- □ We have selected P/N ratio for unit rise and fall resistance ($\mu = 2-3$ for an inverter).
- □ Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter
 - $t_{pdf} =$
 - $t_{pdr} =$
 - $-t_{pd} =$
 - Differentiate t_{pd} w.r.t. P
 - Least delay for P =

P/N Ratios

□ In general, best P/N ratio is sqrt of equal delay ratio.

- Only improves average delay slightly for inverters
- But significantly decreases area and power

Observations

□ For speed:

- NAND vs. NOR
- Many simple stages vs. fewer high fan-in stages
- Latest-arriving input
- □ For area and power:
 - Many simple stages vs. fewer high fan-in stages