Introduction to CMOS VLSI Design

Lecture 8: Combinational Circuits

David Harris

Harvey Mudd College Spring 2004

Outline

- Bubble Pushing
- Compound Gates
- Logical Effort Example
- Input Ordering
- Asymmetric Gates
- Skewed Gates
- Best P/N ratio

Example 1

```
module mux(input s, d0, d1,
    output y);
    assign y = s ? d1 : d0;
endmodule
```

1) Sketch a design using AND, OR, and NOT gates.

Example 2

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

Compound Gates

- Logical Effort of compound gates
unit inverter
$Y=\bar{A}$

$g_{A}=3 / 3$
$p=3 / 3$
$Y=\frac{\mathrm{AOL21}}{A \cdot B+C}$
$Y=\frac{\text { AOI22 }}{A \cdot B+C \cdot D}$

$g_{A}=$
$g_{A}=$
$g_{B}=$
$g_{c}=$
$g_{D}=$
$\mathrm{g}_{\mathrm{E}}=$
$\mathrm{p}=$

Example 4

- The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

NAND Solution

Compound Solution

Example 5

- Annotate your designs with transistor sizes that achieve this delay.

Input Order

- Our parasitic delay model was too simple
- Calculate parasitic delay for Y falling
- If A arrives latest?
- If B arrives latest?

Inner \& Outer Inputs

- Outer input is closest to rail (B)
- Inner input is closest to output (A)
- If input arrival time is known
- Connect latest input to inner terminal

Asymmetric Gates

- Asymmetric gates favor one input over another
[Ex: suppose input A of a NAND gate is most critical
- Use smaller transistor on A (less capacitance)
- Boost size of noncritical input
- So total resistance is same
- $g_{A}=$
- $g_{B}=$
- $g_{\text {total }}=g_{A}+g_{B}=$

I Asymmetric gate approaches $\mathrm{g}=1$ on critical input

- But total logical effort goes up

Symmetric Gates

\square Inputs can be made perfectly symmetric

Skewed Gates

- Skewed gates favor one edge over another
\square Ex: suppose rising output of inverter is most critical
- Downsize noncritical nMOS transistor

unskewed inverter unskewed inverter (equal rise resistance) (equal fall resistance)

- Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
$-g_{u}=$
$-g_{d}=$

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
- HI-skew gates favor rising output (small nMOS)
- LO-skew gates favor falling output (small pMOS)
- Logical effort is smaller for favored direction
- But larger for the other direction

Catalog of Skewed Gates

Inverter
unskewed

NAND2
NOR2

Asymmetric Skew

- Combine asymmetric and skewed gates
- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input

Best P/N Ratio

- We have selected P / N ratio for unit rise and fall resistance ($\mu=2-3$ for an inverter).
] Alternative: choose ratio for least average delay
[Ex: inverter
- Delay driving identical inverter
$-t_{\text {pdf }}=$
$-t_{\mathrm{pdr}}=$
$-t_{p d}=$
- Differentiate t_{pd} w.r.t. P
- Least delay for $\mathrm{P}=$

P/N Ratios

- In general, best P / N ratio is sqrt of equal delay ratio.
- Only improves average delay slightly for inverters
- But significantly decreases area and power

NAND2

NOR2

Observations

- For speed:
- NAND vs. NOR
- Many simple stages vs. fewer high fan-in stages
- Latest-arriving input
\square For area and power:
- Many simple stages vs. fewer high fan-in stages

