Introduction to CMOS VLSI Design

Lecture 6: Wires

David Harris

Harvey Mudd College Spring 2004

Introduction

□ Chips are mostly made of wires called *interconnect*

- In stick diagram, wires set size
- Transistors are little things under the wires
- Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- □ Alternating layers run orthogonally

Wire Geometry

CMOS VLSI Design

W

S

Slide 4

- $\Box \quad \text{Pitch} = w + s$
- □ Aspect ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2
 - Pack in many skinny wires

Layer Stack

- AMI 0.6 μm process has 3 metal layers
- □ Modern processes use 6-10+ metal layers
- Layer
 T (nm)

 Intel 180 nm process
 6
 1720

 M1: thin, narrow (< 3λ)
 1000

 High density cells
 5
 1600

 1000
 1000
 - M2-M4: thicker
 For longer wires
 - M5-M6: thickest
 - For V_{DD}, GND, clk

6	1720	860	860	2.0	
	1000				
5	1600	800	800	2.0	
	1000				
4	1080	540	540	2.0	
	700				
3	700	320	320	2.2	
	700				
2	700 700	320	320	2.2	
1	480	250	250	1.9	00
	800				
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

W (nm) **S** (nm)

AR

Substrate

Wire Resistance

\Box ρ = *resistivity* (Ω^* m)

R =

CMOS VLSI Design

Choice of Metals

- □ Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (nW*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

□ Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (WD)		
Diffusion (silicided)	3-10		
Diffusion (no silicide)	50-200		
Polysilicon (silicided)	3-10		
Polysilicon (no silicide)	50-400		
Metal1	0.08		
Metal2	0.05		
Metal3	0.05		
Metal4	0.03		
Metal5	0.02		
Metal6	0.02		

6: Wires

Contacts Resistance

- \Box Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

6: Wires

CMOS VLSI Design

Slide 12

Capacitance Trends

D Parallel plate equation: $C = \varepsilon A/d$

- Wires are not parallel plates, but obey trends
- Increasing area (W, t) increases capacitance
- Increasing distance (s, h) decreases capacitance
- Dielectric constant

 $-\epsilon = k\epsilon_0$

- \Box $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
- \square k = 3.9 for SiO₂
- Processes are starting to use low-k dielectrics

 $- k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

\Box Typical wires have ~ 0.2 fF/µm

– Compare to 2 fF/ μ m for gate capacitance

CMOS VLSI Design

Diffusion & Polysilicon

- \Box Diffusion capacitance is very high (about 2 fF/µm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion *runners* for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models Wires are a distributed system - Approximate with lumped element models N segments $\longleftrightarrow \begin{array}{c} R/N & R/N \\ \hline C/N & C/N \end{array} \\ \circ \circ \circ \begin{array}{c} R/N & R/N \\ \hline C/N & C/N \end{array} \\ \end{array} \\ C/N \\ \end{array} \\ \end{array}$ L-model T-model π-model 3-segment π -model is accurate to 3% in simulation L-model needs 100 segments for same accuracy! Use single segment π -model for Elmore delay 6: Wires Slide 16 **CMOS VLSI Design**

Example

□ Metal2 wire in 180 nm process

- 5 mm long
- 0.32 μ m wide
- **Construct a 3-segment** π -model
 - $-R_{\Box} = 0.05 \ \Omega/\Box$ => R = 781 Ω

$$- C_{permicron} = 0.2 \text{ fF}/\mu \text{m}$$

=> R = 781=> C = 1 pF

CMOS VLSI Design

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $R = 2.5 k\Omega^* \mu m$ for gates
 - Unit inverter: 0.36 μ m nMOS, 0.72 μ m pMOS

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay Assume layers above and below on average are quiet - Second terminal of capacitor can be ignored - Model as $C_{gnd} = C_{top} + C_{bot}$ Effective C_{adj} depends on behavior of neighbors - Miller effect

В	DV	C _{eff(A)}	MCF
Constant	V _{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C _{gnd}	0
Switching opposite A	2V _{DD}	C_{gnd} + 2 C_{adj}	2

CMOS VLSI Design

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- □ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

CMOS VLSI Design

Slide 24

Driven Victims

□ Usually victim is driven by a gate that fights noise

- Noise depends on relative resistances
- Victim driver is in linear region, agg. in saturation
- If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor}$$

$$k = \frac{t_{aggressor}}{t_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

$$k = \frac{t_{aggressor}}{t_{victim}} = \frac{R_{aggressor} \left(C_{gnd-v} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

Noise Implications

- □ So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

Repeaters

- □ R and C are proportional to /
- \Box RC delay is proportional to P
 - Unacceptably great for long wires
- □ Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- □ How many repeaters should we use?
- □ How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w**I*, Resistance R_w*I
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

