## Introduction to CMOS VLSI Design

# Lecture 21: Scaling and Economics 

David Harris


Harvey Mudd College Spring 2004

# Outline 

## - Scaling

- Transistors
- Interconnect
- Future Challenges
- VLSI Economics


## Moore's Law

- In 1965, Gordon Moore predicted the exponential growth of the number of transistors on an IC
- Transistor count doubled every year since invention
- Predicted > 65,000 transistors by 1975!
- Growth limited by power


21: Scaling and Economics
CMOS VLSI Design
Slide 3

## More Moore

- Transistor counts have doubled every 26 months for the past three decades.



## Speed Improvement

- Clock frequencies have also increased exponentially
- A corollary of Moore's Law



## Why?

$\square$ Why more transistors per IC?

- Why faster computers?


## Why?

$\square$ Why more transistors per IC?

- Smaller transistors
- Larger dice
- Why faster computers?


## Why?

- Why more transistors per IC?
- Smaller transistors
- Larger dice
- Why faster computers?
- Smaller, faster transistors
- Better microarchitecture (more IPC)
- Fewer gate delays per cycle


## Scaling

] The only constant in VLSI is constant change

- Feature size shrinks by 30\% every 2-3 years
- Transistors become cheaper
- Transistors become faster
- Wires do not improve (and may get worse)
- Scale factor S
- Typically $S=\sqrt{2}$
- Technology nodes



## Scaling Assumptions

What changes between technology nodes?

- Constant Field Scaling
- All dimensions ( $x, y, z=>W, L, t_{o x}$ )
- Voltage ( $\mathrm{V}_{\mathrm{DD}}$ )
- Doping levels
- Lateral Scaling
- Only gate length L
- Often done as a quick gate shrink $(S=1.05)$


## Device Scaling

| Influence of scaling on MOS device characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter | Sensitivity | Constant Field | Lateral |
| Scaling Parameters |  |  |  |
| Length: $L$ |  |  |  |
| Width: $W$ |  |  |  |
| Gate oxide thickness: $t_{\text {ox }}$ |  |  |  |
| Supply voltage: $V_{D D}$ |  |  |  |
| Threshold voltage: $V_{t n}, V_{t p}$ |  |  |  |
| Substrate doping: $N_{A}$ |  |  |  |
| Device Characteristics |  |  |  |
| $\beta$ |  |  |  |
| Current: $I_{\text {d }}$ |  |  |  |
| Resistance: $R$ |  |  |  |
| Gate capacitance: $C$ |  |  |  |
| Gate delay: $\tau$ |  |  |  |
| Clock frequency: $f$ |  |  |  |
| Dynamic power dissipation (per gate): $P$ |  |  |  |
| Chip area: $A$ |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

21: Scaling and Economics

## Device Scaling



21: Scaling and Economics

## Device Scaling



21: Scaling and Economics

## Device Scaling



| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: $W$ |  | 1/S | 1 |
| Gate oxide thickness: $t_{\text {oc }}$ |  | 1/S | 1 |
| Supply voltage: $V_{D D}$ |  | 1/S | 1 |
| Threshold voltage: $V_{t o}, V_{t p}$ |  | 1/S | 1 |
| Substrate doping: $N_{A}$ |  | S | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{us}}}$ | $S$ | S |
| Current: $I_{\text {d }}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | 1/S | $s$ |
| Resistance: $R$ |  |  |  |
| Gate capacitance: $C$ |  |  |  |
| Gate delay: $\tau$ |  |  |  |
| Clock frequency: $f$ |  |  |  |
| Dynamic power dissipation (per gate): $P$ |  |  |  |
| Chip area: $A$ |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

## Device Scaling



| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: $W$ |  | 1/S | 1 |
| Gate oxide thickness: $t_{\text {oc }}$ |  | 1/S | 1 |
| Supply voltage: $V_{D D}$ |  | 1/S | 1 |
| Threshold voltage: $V_{t o}, V_{t p}$ |  | 1/S | 1 |
| Substrate doping: $N_{A}$ |  | S | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{us}}}$ | $s$ | S |
| Current: $I_{\text {d }}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | 1/S | $s$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d j}}$ | 1 | 1/S |
| Gate capacitance: $C$ |  |  |  |
| Gate delay: $\tau$ |  |  |  |
| Clock frequency: $f$ |  |  |  |
| Dynamic power dissipation (per gate): $P$ |  |  |  |
| Chip area: $A$ |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

## Device Scaling

| Table 4.15 Influence of scaling on MOS device characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter | Sensitivity | Constant Field | Lateral |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: $W$ |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ck }}$ |  | $1 / S$ | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t a}, V_{t p}$ |  | $1 / S$ | 1 |
| Substrate doping: $N_{A}$ |  | S | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{ou}}}$ | $S$ | $S$ |
| Current: $I_{d}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | 1/S | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / S$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\alpha s}}$ | $1 / S$ | 1/S |
| Gate delay: $\tau$ |  |  |  |
| Clock frequency: $f$ |  |  |  |
| Dynamic power dissipation (per gate): $P$ |  |  |  |
| Chip area: A |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

21: Scaling and Economics

## Device Scaling


Table 4.15 Influence of scaling on MOS device characteristics

| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: $W$ |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ck }}$ |  | $1 / S$ | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t s}, V_{t p}$ |  | $1 / \mathrm{S}$ | 1 |
| Substrate doping: $N_{A}$ |  | S | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{ou}}}$ | $S$ | $S$ |
| Current: $I_{i d}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | $1 / S$ | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / S$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\alpha \pi}}$ | $1 / S$ | 1/S |
| Gate delay: $\tau$ | $R C$ | $1 / S$ | $1 / S^{2}$ |
| Clock frequency: $f$ |  |  |  |
| Dynamic power dissipation (per gate): $P$ |  |  |  |
| Chip area: A |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

## Device Scaling


Table 4.15 Influence of scaling on MOS device characteristics

| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: W |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ck }}$ |  | $1 / S$ | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t n}, V_{t p}$ |  | $1 / \mathrm{S}$ | 1 |
| Substrate doping: $N_{A}$ |  | S | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{os}}}$ | $S$ | $S$ |
| Current: $I_{\text {d }}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | $1 / S$ | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / S$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\alpha \pi}}$ | $1 / S$ | 1/S |
| Gate delay: $\tau$ | $R C$ | $1 / S$ | $1 / S^{2}$ |
| Clock frequency: $f$ | $1 / \tau$ | $S$ | $S^{2}$ |
| Dynamic power dissipation (per gate): $P$ |  |  |  |
| Chip area: A |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

## Device Scaling


Table 4.15 Influence of scaling on MOS device characteristics

| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: $W$ |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ck }}$ |  | $1 / S$ | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t s}, V_{t p}$ |  | $1 / \mathrm{S}$ | 1 |
| Substrate doping: $N_{A}$ |  | S | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{ou}}}$ | $S$ | $S$ |
| Current: $I_{d}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | $1 / S$ | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / S$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\alpha \pi}}$ | $1 / S$ | 1/S |
| Gate delay: $\tau$ | $R C$ | $1 / S$ | $1 / S^{2}$ |
| Clock frequency: $f$ | $1 / \tau$ | $S$ | $S^{2}$ |
| Dynamic power dissipation (per gate): $P$ | $C V^{2} \hat{f}$ | $1 / S^{2}$ | $s$ |
| Chip area: A |  |  |  |
| Power density |  |  |  |
| Current density |  |  |  |

## Device Scaling


Table 4.15 Influence of scaling on MOS device characteristics

| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | $1 / S$ |
| Width: W |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ck }}$ |  | 1/S | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t n}, V_{s p}$ |  | $1 / S$ | 1 |
| Substrate doping: $N_{A}$ |  | $S$ | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{ou}}}$ | $S$ | $S$ |
| Current: $I_{d s}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | $1 / S$ | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / \$$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\alpha s}}$ | $1 / \mathrm{S}$ | $1 / \mathrm{S}$ |
| Gate delay: $\tau$ | $R C$ | 1/S | $1 / S^{2}$ |
| Clock frequency: $f$ | $1 / \tau$ | $S$ | $S^{2}$ |
| Dynamic power dissipation (per gate): $P$ | $C V^{2} \hat{f}$ | $1 / S^{2}$ | $S$ |
| Chip area: $A$ |  | $1 / S^{2}$ | 1 |
| Power density |  |  |  |
| Current density |  |  |  |

## Device Scaling


Table 4.15 Influence of scaling on MOS device characteristics

| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | 1/S |
| Width: W |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ok }}$ |  | $1 / S$ | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t n}, V_{s p}$ |  | $1 / S$ | 1 |
| Substrate doping: $N_{A}$ |  | $S$ | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{os}}}$ | $S$ | $S$ |
| Current: $I_{d}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | $1 / S$ | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / S$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\alpha i}}$ | $1 / S$ | 1/S |
| Gate delay: $\tau$ | $R C$ | 1/S | $1 / S^{2}$ |
| Clock frequency: $f$ | $1 / \tau$ | $S$ | $S^{2}$ |
| Dynamic power dissipation (per gate): $P$ | $C V^{2} \hat{f}$ | $1 / S^{2}$ | S |
| Chip area: $A$ |  | $1 / S^{2}$ | 1 |
| Power density | $P / A$ | 1 | $S$ |
| Current density |  |  |  |

## Device Scaling


Table 4.15 Influence of scaling on MOS device characteristics

| Parameter | Sensitivity | Constant Field | Lateral |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Length: $L$ |  | 1/S | $1 / S$ |
| Width: W |  | $1 / S$ | 1 |
| Gate oxide thickness: $t_{\text {ox }}$ |  | $1 / \mathrm{S}$ | 1 |
| Supply voltage: $V_{D D}$ |  | $1 / S$ | 1 |
| Threshold voltage: $V_{t a}, V_{t p}$ |  | $1 / S$ | 1 |
| Substrate doping: $N_{A}$ |  | $S$ | 1 |
| Device Characteristics |  |  |  |
| $\beta$ | $\frac{W}{L} \frac{1}{t_{\mathrm{os}}}$ | $S$ | $S$ |
| Current: $I_{d s}$ | $\beta\left(V_{D D}-V_{t}\right)^{2}$ | $1 / S$ | $S$ |
| Resistance: $R$ | $\frac{V_{D D}}{I_{d s}}$ | 1 | $1 / S$ |
| Gate capacitance: $C$ | $\frac{W L}{t_{\mathrm{os}}}$ | $1 / S$ | 1/S |
| Gate delay: $\tau$ | $R C$ | 1/S | $1 / S^{2}$ |
| Clock frequency: $f$ | 1/ $\tau$ | $S$ | $S^{2}$ |
| Dynamic power dissipation (per gate): $P$ | $C V^{2} \hat{f}$ | 1/S ${ }^{2}$ | S |
| Chip area: $A$ |  | $1 / S^{2}$ | 1 |
| Power density | P/A | 1 | $S$ |
| Current density | $I_{d} /$ d | $S$ | $S$ |

## Observations

- Gate capacitance per micron is nearly independent of process
- But ON resistance * micron improves with process

Gates get faster with scaling (good)
D Dynamic power goes down with scaling (good)
Current density goes up with scaling (bad)

- Velocity saturation makes lateral scaling unsustainable


## Example

- Gate capacitance is typically about $2 \mathrm{fF} / \mu \mathrm{m}$
- The FO4 inverter delay in the TT corner for a process of feature size $f($ in nm$)$ is about $0.5 f \mathrm{ps}$
$\square$ Estimate the ON resistance of a unit (4/2 $\lambda$ ) transistor.


## Solution

Gate capacitance is typically about $2 \mathrm{fF} / \mu \mathrm{m}$

- The FO4 inverter delay in the TT corner for a process of feature size $f($ in nm$)$ is about $0.5 f \mathrm{ps}$
$\square$ Estimate the ON resistance of a unit (4/2 $\lambda$ ) transistor.
- $\mathrm{FO} 4=5 \tau=15 \mathrm{RC}$
- $\mathrm{RC}=(0.5 \mathrm{f}) / 15=(\mathrm{f} / 30) \mathrm{ps} / \mathrm{nm}$
- If $\mathrm{W}=2 \mathrm{f}, \mathrm{R}=8.33 \mathrm{k} \Omega$
- Unit resistance is roughly independent of $f$


## Scaling Assumptions

- Wire thickness
- Hold constant vs. reduce in thickness
- Wire length
- Local / scaled interconnect
- Global interconnect
- Die size scaled by $D_{c} \approx 1.1$


## Interconnect Scaling

除

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: w |  |  |  |
| Spacing: s |  |  |  |
| Thickness: $t$ |  |  |  |
| Interlayer oxide height: $b$ |  |  |  |
| Characteristics Per Unit Length |  |  |  |
| Wire resistance per unit length: $R_{\text {w }}$ |  |  |  |
| Fringing capacitance per unit length: $C_{\text {wf }}$ |  |  |  |
| Parallel plate capacitance per unit length: $C_{\mathrm{vp}}$ |  |  |  |
| Total wire capacitance per unit length: $C_{\text {w }}$ |  |  |  |
| Unrepeated RC constant per unit length: $t_{\mathrm{ww}}$ |  |  |  |
| Repeated wire RC delay per unit length: $t_{\text {wr }}$ (assuming constant field scaling of gates in Table 4.15) |  |  |  |
| Crosstalk noise |  |  |  |

## Interconnect Scaling




## Interconnect Scaling



| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: w |  | 1/S |  |
| Spacing:s |  | 1/S |  |
| Thickness: $t$ |  | $1 / S$ | 1 |
| Interlayer oxide height: $b$ |  | $1 / \mathrm{S}$ |  |
| Characteristics Per Unit Length |  |  |  |
| Wire resistance per unit length: $R_{\text {w }}$ | $\frac{1}{w v t}$ | $S^{2}$ | S |
| Fringing capacitance per unit length: $C_{\text {wf }}$ |  |  |  |
| Parallel plate capacitance per unit length: $C_{\mathrm{vap}}$ |  |  |  |
| Total wire capacitance per unit length: $C_{w}$ |  |  |  |
| Unrepeated RC constant per unit length: $t_{\mathrm{ww}}$ |  |  |  |
| Repeated wire RC delay per unit length: $t_{\text {wr }}$ (assuming constant field scaling of gates in Table 4.15) |  |  |  |
| Crosstalk noise |  |  |  |

## Interconnect Scaling



| Parameter | Sensitivity | Reduced Thickness | Constant <br> Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: w |  | 1/S |  |
| Spacing: s |  | 1/S |  |
| Thickness: t |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Characteristics Per Unit Length |  |  |  |
| Wire resistance per unit length: $R_{\text {w }}$ | $\frac{1}{w v t}$ | $S^{2}$ | S |
| Fringing capacitance per unit length: $C_{\text {wf }}$ | $\frac{t}{s}$ | 1 | S |
| Parallel plate capacitance per unit length: $C_{\text {wo }}$ |  |  |  |
| Total wire capacitance per unit length: $C_{w}$ |  |  |  |
| Unrepeated RC constant per unit length: $t_{\mathrm{ww}}$ |  |  |  |
| Repeated wire RC delay per unit length: $t_{\text {wr }}$ (assuming constant field scaling of gates in Table 4.15) |  |  |  |
| Crosstalk noise |  |  |  |

## Interconnect Scaling



| Table 4.16 | Influence of scaling on interconnect characteristics |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |

## Interconnect Scaling



| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: w |  | 1/S |  |
| Spacing: s |  | 1/S |  |
| Thickness: t |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Characteristics Per Unit Length |  |  |  |
| Wire resistance per unit length: $R_{\text {w }}$ | $\frac{1}{w w t}$ | $S^{2}$ | $S$ |
| Fringing capacitance per unit length: $C_{\text {wf }}$ | $\frac{t}{s}$ | 1 | S |
| Parallel plate capacitance per unit length: $C_{\text {vp }}$ | $\frac{w}{b}$ | 1 | 1 |
| Total wire capacitance per unit length: $C_{w}$ | $C_{s y}+C_{\text {a }}$ | 1 | between 1, $S$ |
| Unrepeated RC constant per unit length: $f_{\mathrm{ww}}$ |  |  |  |
| Repeated wire RC delay per unit length: $t_{\text {wr }}$ (assuming constant field scaling of gates in Table 4.15) |  |  |  |
| Crosstalk noise |  |  |  |

## Interconnect Scaling



| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: w |  | 1/S |  |
| Spacing: s |  | 1/S |  |
| Thickness: t |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Characteristics Per Unit Length |  |  |  |
| Wire resistance per unit length: $R_{\text {w }}$ | $\frac{1}{w w t}$ | $S^{2}$ | $S$ |
| Fringing capacitance per unit length: $C_{\text {wf }}$ | $\frac{t}{s}$ | 1 | S |
| Parallel plate capacitance per unit length: $C_{\text {vp }}$ | $\frac{w}{b}$ | 1 | 1 |
| Total wire capacitance per unit length: $C_{w}$ | $C_{y s}+C_{\text {cop }}$ | 1 | between 1, S |
| Unrepeated RC constant per unit length: $f_{\mathrm{ww}}$ | $R_{w} C_{\text {w }}$ | $S^{2}$ | between $S$, $S^{2}$ |
| Repeated wire RC delay per unit length: $t_{\text {wr }}$ (assuming constant field scaling of gates in Table 4.15) |  |  |  |
| Crosstalk noise |  |  |  |

## Interconnect Scaling

除


## Interconnect Scaling

除

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: w |  | 1/S |  |
| Spacing: s |  | 1/S |  |
| Thickness: t |  | $1 / S$ | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Characteristics Per Unit Length |  |  |  |
| Wire resistance per unit length: $R_{\text {w }}$ | $\frac{1}{w v t}$ | $S^{2}$ | S |
| Fringing capacitance per unit length: $C_{\text {wf }}$ | $\frac{t}{s}$ | 1 | S |
| Parallel plate capacitance per unit length: $C_{\text {vp }}$ | $\frac{w}{b}$ | 1 | 1 |
| Total wire capacitance per unit length: $C_{w}$ | $C_{y s}+C_{\text {cop }}$ | 1 | between 1, S |
| Unrepeated RC constant per unit length: $f_{\mathrm{ww}}$ | $R_{w} C_{\text {w }}$ | $S^{2}$ | between $S$, $S^{2}$ |
| Repeated wire RC delay per unit length: $t_{\text {wr }}$ (assuming constant field scaling of gates in Table 4.15) | $\sqrt{R C R_{w} C_{w}}$ | $\sqrt{s}$ | $\begin{aligned} & \text { between } 1, \\ & \sqrt{S} \end{aligned}$ |
| Crosstalk noise | $\frac{t}{s}$ | 1 | S |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | $1 / S$ |  |
| Spacing: s |  | $1 / S$ |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | $1 / S$ |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: l |  |  |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |
| Global Interconnect Characteristics |  |  |  |
| Length: $l$ |  |  |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | 1/S |  |
| Spacing: s |  | $1 / S$ |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $h$ |  | $1 / S$ |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: l |  | 1/S |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |
| Global Interconnect Characteristics |  |  |  |
| Length: l |  |  |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | 1/S |  |
| Spacing: $s$ |  | $1 / S$ |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: $/$ |  | 1/S |  |
| Unrepeated wire RC delay | $l^{2} t_{\text {wu }}$ | 1 | between $1 / S, 1$ |
| Repeated wire delay |  |  |  |
| Global Interconnect Charact |  |  |  |
| Length: l |  |  |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | 1/S |  |
| Spacing: s |  | 1/S |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: l |  | 1/S |  |
| Unrepeated wire RC delay | $p^{2} t_{\text {wu }}$ | 1 | between $1 / S, 1$ |
| Repeated wire delay | $l t_{w r}$ | $\sqrt{1 / S}$ | between $1 / S, \sqrt{1 / S}$ |
| Global Interconnect Characteristics |  |  |  |
| Length: l |  |  |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | 1/S |  |
| Spacing: $s$ |  | $1 / S$ |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: $/$ |  | 1/S |  |
| Unrepeated wire RC delay | $l^{2} t_{\text {wu }}$ | 1 | between 1/S, 1 |
| Repeated wire delay | $l t_{w r}$ | $\sqrt{1 / S}$ | between $1 / S, \sqrt{1 / S}$ |
| Global Interconnect Characteristics |  |  |  |
| Length: l |  | $D_{c}$ |  |
| Unrepeated wire RC delay |  |  |  |
| Repeated wire delay |  |  |  |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | 1/S |  |
| Spacing: s |  | 1/S |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | 1/S |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: $l$ |  | 1/S |  |
| Unrepeated wire RC delay | $l^{2} t_{\text {wu }}$ | 1 | between $1 / S, 1$ |
| Repeated wire delay | $l t_{w r}$ | $\sqrt{1 / S}$ | between $1 / S, \sqrt{1 / S}$ |
| Global Interconnect Charac |  |  |  |
| Length: l |  | $D_{c}$ |  |
| Unrepeated wire RC delay | $p^{2} t_{\text {wu }}$ | $S^{2} D_{c}^{2}$ | between $S D_{c}^{2}, S^{2} D_{c}^{2}$ |
| Repeated wire delay |  |  |  |

## Interconnect Delay

## Table 4.16 Influence of scaling on interconnect characteristics

| Parameter | Sensitivity | Reduced Thickness | Constant Thickness |
| :---: | :---: | :---: | :---: |
| Scaling Parameters |  |  |  |
| Width: $w$ |  | 1/S |  |
| Spacing: $s$ |  | 1/S |  |
| Thickness: $t$ |  | 1/S | 1 |
| Interlayer oxide height: $b$ |  | $1 / S$ |  |
| Local/Scaled Interconnect Characteristics |  |  |  |
| Length: l |  | 1/S |  |
| Unrepeated wire RC delay | $p^{2} t_{\text {wu }}$ | 1 | between 1/S, 1 |
| Repeated wire delay | $l t_{w r}$ | $\sqrt{1 / S}$ | between $1 / S, \sqrt{1 / S}$ |
| Global Interconnect Characteristics |  |  |  |
| Length: l |  |  |  |
| Unrepeated wire RC delay | $l^{2} t_{\text {wu }}$ | $S^{2} D_{c}{ }^{2}$ | between $S D_{c}^{2}, S^{2} D_{c}^{2}$ |
| Repeated wire delay | $l t_{w r}$ | $D_{c} \sqrt{S}$ | $\begin{aligned} & \text { between } D_{c}, \\ & D_{c} \sqrt{S} \end{aligned}$ |

## Observations

- Capacitance per micron is remaining constant
- About $0.2 \mathrm{fF} / \mu \mathrm{m}$
- Roughly $1 / 10$ of gate capacitance
- Local wires are getting faster
- Not quite tracking transistor improvement
- But not a major problem
- Global wires are getting slower
- No longer possible to cross chip in one cycle


## ITRS

- Semiconductor Industry Association forecast - Intl. Technology Roadmap for Semiconductors

Table 4.17 Predictions from the 2002 IIRS

| Year | 2001 | 2004 | 2007 | 2010 | 2013 | 2016 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature size (nm) | 130 | 90 | 65 | 45 | 32 | 22 |
| $V_{D D}(\mathrm{~V})$ | $1.1-1.2$ | $1-1.2$ | $0.7-1.1$ | $0.6-1.0$ | $0.5-0.9$ | $0.4-0.9$ |
| Millions of transistors/die | 193 | 385 | 773 | 1564 | 3092 | 6184 |
| Wiring levels | $8-10$ | $9-13$ | $10-14$ | $10-14$ | $11-15$ | $11-15$ |
| Intermediate wire pitch (nm) | 450 | 275 | 195 | 135 | 95 | 65 |
| Interconnect dielectric <br> constant | $3-3.6$ | $2.6-3.1$ | $2.3-2.7$ | 2.1 | 1.9 | 1.8 |
| I/O signals | 1024 | 1024 | 1024 | 1280 | 1408 | 1472 |
| Clock rate $(\mathrm{MHz})$ | 1684 | 3990 | 6739 | 11511 | 19348 | 28751 |
| FO4 delays/cycle | 13.7 | 8.4 | 6.8 | 5.8 | 4.8 | 4.7 |
| Maximum power (W) | 130 | 160 | 190 | 218 | 251 | 288 |
| DRAM capacity (Gbits) | 0.5 | 1 | 4 | 8 | 32 | 64 |

21: Scaling and Economics

## Scaling Implications

- Improved Performance
- Improved Cost
] Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits


## Cost Improvement

- In 2003, \$0.01 bought you 100,000 transistors
- Moore's Law is still going strong


[Moore03]


## Interconnect Woes

- SIA made a gloomy forecast in 1997
- Delay would reach minimum at 250 - 180 nm , then get worse because of wires
- But...

[SIA97]


## Interconnect Woes

- SIA made a gloomy forecast in 1997
- Delay would reach minimum at 250 - 180 nm , then get worse because of wires
- But...
- Misleading scale
- Global wires
- 100 kgate blocks ok ${ }^{\text {品路 }}$



## Reachable Radius

- We can't send a signal across a large fast chip in one cycle anymore
$\square$ But the microarchitect can plan around this - Just as off-chip memory latencies were tolerated



## Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
- If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
- "Business as usual will not work in the future."
- Intel stock dropped 8\% on the next day
- But attention to power is increasing


21: Scaling and Economics

## Static Power

- $V_{D D}$ decreases
- Save dynamic power
- Protect thin gate oxides and short channels
- No point in high value because of velocity sat.
- $\mathrm{V}_{\mathrm{t}}$ must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
. Major future challenge



## Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
- Bigger design teams
- Up to 500 for a high-end microprocessor
- More expensive design cost
- Pressure to raise productivity
- Rely on synthesis, IP blocks
- Need for good engineering managers


## Physical Limits

- Will Moore's Law run out of steam?
- Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
- Dynamic power
- Subthreshold leakage, tunneling
- Short channel effects
- Fabrication costs
- Electromigration
- Interconnect delay
$\square$ Rumors of demise have been exaggerated


## VLSI Economics

$\square$ Selling price $\mathrm{S}_{\text {total }}$

$$
-S_{\text {total }}=C_{\text {total }} /(1-\mathrm{m})
$$

- $\mathrm{m}=$ profit margin
- $C_{\text {total }}=$ total cost
- Nonrecurring engineering cost (NRE)
- Recurring cost
- Fixed cost


## NRE

- Engineering cost
- Depends on size of design team
- Include benefits, training, computers
- CAD tools:
- Digital front end: \$10K
- Analog front end: $\$ 100 \mathrm{~K}$
- Digital back end: \$1M
- Prototype manufacturing
- Mask costs: $\$ 500 \mathrm{k}$ - 1 M in 130 nm process
- Test fixture and package tooling


## Recurring Costs

- Fabrication
- Wafer cost / (Dice per wafer * Yield)
- Wafer cost: \$500-\$3000
- Dice per wafer: $N=\pi\left[\frac{r^{2}}{A}-\frac{2 r}{\sqrt{2 A}}\right]$
- Yield: $\mathrm{Y}=\mathrm{e}^{-A D}$
- For small $A, Y \approx 1$, cost proportional to area
- For large $A, Y \rightarrow 0$, cost increases exponentially
- Packaging
- Test


## Fixed Costs

- Data sheets and application notes
- Marketing and advertising
- Yield analysis


## Example

- You want to start a company to build a wireless communications chip. How much venture capital must you raise?
- Because you are smarter than everyone else, you can get away with a small team in just two years:
- Seven digital designers
- Three analog designers
- Five support personnel


## Solution

- Digital designers:
- salary
- overhead
- computer
- CAD tools
- Total:
- Analog designers
- salary
- overhead
- computer
- CAD tools
- Total:
- $\quad$ Support staff
- salary
- overhead
- computer
- Total:
- Fabrication
- Back-end tools:
- Masks:
- Total:
- Summary


## Solution

$\square$ Digital designers:

- \$70k salary
- \$30k overhead
- \$10k computer
- \$10k CAD tools
- Total: \$120k * 7 = \$840k
- Analog designers
- \$100k salary
- \$30k overhead
- \$10k computer
- \$100k CAD tools
- Total: $\$ 240 \mathrm{k} * 3=\$ 720 \mathrm{k}$
- $\quad$ Support staff
- \$45k salary
- \$20k overhead
- \$5k computer
- Total: \$70k * 5 = \$350k
$\square$ Fabrication
- Back-end tools: \$1M
- Masks: \$1M
- Total: \$2M / year
$\square$ Summary
- 2 years @ \$3.91M / year
- \$8M design \& prototype


## Cost Breakdown

- New chip design is fairly capital-intensive
$\square$ Maybe you can do it for less?


