#### Introduction to CMOS VLSI Design

#### Lecture 21: Scaling and Economics

**David Harris** 



Harvey Mudd College Spring 2004

#### Outline

- □ Scaling
  - Transistors
  - Interconnect
  - Future Challenges
- VLSI Economics

#### **Moore's Law**

- In 1965, Gordon Moore predicted the exponential growth of the number of transistors on an IC
- Transistor count doubled every year since invention
- Predicted > 65,000transistors by 1975!
- Growth limited by power



**21: Scaling and Economics** 

NOTIONS

**CMOS VLSI Design** 

Slide 3

#### **More Moore**

Transistor counts have doubled every 26 months for the past three decades.



**21: Scaling and Economics** 

# **Speed Improvement**

#### □ Clock frequencies have also increased exponentially

- A corollary of Moore's Law





# Why? □ Why more transistors per IC? Smaller transistors Larger dice □ Why faster computers?

# Why?

- □ Why more transistors per IC?
  - Smaller transistors
  - Larger dice
- □ Why faster computers?
  - Smaller, faster transistors
  - Better microarchitecture (more IPC)
  - Fewer gate delays per cycle

### Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
  - Transistors become cheaper
  - Transistors become faster
  - Wires do not improve
     (and may get worse) <u>§</u>
- Scale factor S
  - Typically  $S = \sqrt{2}$
  - Technology nodes



21: Scaling and Economics

**CMOS VLSI Design** 

Feature Size

# **Scaling Assumptions**

- What changes between technology nodes?
- Constant Field Scaling
  - All dimensions (x, y, z => W, L,  $t_{ox}$ )
  - Voltage (V<sub>DD</sub>)
  - Doping levels
- Lateral Scaling
  - Only gate length L
  - Often done as a quick gate shrink (S = 1.05)

| Table 4.15 Influence of scal           |                      |                   |         |
|----------------------------------------|----------------------|-------------------|---------|
| Parameter                              | Sensitivity          | Constant<br>Field | Lateral |
| 5                                      | Scaling Parameters   |                   |         |
| Length: L                              |                      |                   |         |
| Width: W                               |                      |                   |         |
| Gate oxide thickness: $t_{ox}$         |                      |                   |         |
| Supply voltage: V <sub>DD</sub>        |                      |                   |         |
| Threshold voltage: $V_{tn}$ , $V_{1p}$ |                      |                   |         |
| Substrate doping: $N_A$                |                      |                   |         |
| De                                     | vice Characteristics |                   |         |
| β                                      |                      |                   |         |
|                                        |                      |                   |         |
|                                        |                      |                   |         |
| Current: Id                            |                      |                   |         |
|                                        |                      |                   |         |
| Resistance: R                          |                      |                   |         |
|                                        |                      |                   |         |
|                                        |                      |                   |         |
| Gate capacitance: C                    |                      |                   |         |
|                                        |                      |                   |         |
| Gate delay: τ                          |                      |                   |         |
| Clock frequency: f                     |                      |                   |         |
| Dynamic power dissipation (per ga      | ta): D               |                   |         |
| Chip area: A                           | (c), r               |                   |         |
| 1                                      |                      |                   |         |
| Power density                          |                      |                   |         |
| Current density                        |                      |                   |         |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity     | Constant | Lateral |
|-----------------------------------------|-----------------|----------|---------|
|                                         |                 | Field    |         |
| Scalir                                  | ng Parameters   |          |         |
| Length: L                               |                 | 1/S      | 1/S     |
| Width: W                                |                 | 1/S      | 1       |
| Gate oxide thickness: $t_{ox}$          |                 | 1/8      | 1       |
| Supply voltage: VDD                     |                 | 1/S      | 1       |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                 | 1/S      | 1       |
| Substrate doping: $N_A$                 |                 | S        | 1       |
| Device                                  | Characteristics |          |         |
| β                                       |                 |          |         |
|                                         |                 |          |         |
| Current: I <sub>d</sub>                 |                 |          |         |
|                                         |                 |          |         |
| Resistance: R                           |                 |          |         |
|                                         |                 |          |         |
| C                                       |                 |          |         |
| Gate capacitance: C                     |                 |          |         |
|                                         |                 |          |         |
| Gate delay: τ                           |                 |          |         |
| Clock frequency: f                      |                 |          |         |
| Dynamic power dissipation (per gate): P | 2               |          |         |
| Chip area: A                            |                 |          |         |
| Power density                           |                 |          |         |
|                                         |                 |          |         |

**21: Scaling and Economics** 

| Table 4.15 Influence of scaling or      | n MOS devic                       | e characteris     | tics    |
|-----------------------------------------|-----------------------------------|-------------------|---------|
| Parameter                               | Sensitivity                       | Constant<br>Field | Lateral |
| Scaling                                 | Parameters                        |                   |         |
| Length: L                               |                                   | 1/S               | 1/S     |
| Width: W                                |                                   | 1/8               | 1       |
| Gate oxide thickness: $t_{ox}$          |                                   | 1/8               | 1       |
| Supply voltage: VDD                     |                                   | 1/S               | 1       |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                   | 1/S               | 1       |
| Substrate doping: $N_A$                 |                                   | S                 | 1       |
| Device C                                | haracteristics                    |                   |         |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$ | S                 | 8       |
| Current: I <sub>di</sub>                |                                   |                   |         |
| Resistance: R                           |                                   |                   |         |
| Gate capacitance: C                     |                                   |                   |         |
| Gate delay: τ                           |                                   |                   |         |
| Clock frequency: f                      |                                   |                   |         |
| Dynamic power dissipation (per gate): P |                                   |                   |         |
| Chip area: A                            |                                   |                   |         |
| Power density                           |                                   |                   |         |
| Current density                         |                                   |                   |         |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                               | Constant<br>Field | Lateral |
|-----------------------------------------|-------------------------------------------|-------------------|---------|
| Scaling                                 | Parameters                                | Tielu             |         |
| Length: L                               |                                           | 1/S               | 1/S     |
| Width: W                                |                                           | 1/S               | 1       |
| Gate oxide thickness: tox               |                                           | 1/S               | 1       |
| Supply voltage: VDD                     |                                           | 1/S               | 1       |
| Threshold voltage: Vza, Vzp             |                                           | 1/S               | 1       |
| Substrate doping: $N_d$                 |                                           | S                 | 1       |
| Device C                                | haracteristics                            |                   |         |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$         | 8                 | 8       |
| Current: $I_{\dot{a}}$                  | $\beta \left( V_{DD} - V_{t} \right)^{2}$ | 1/8               | 8       |
| Resistance: R                           |                                           |                   |         |
| Gate capacitance: C                     |                                           |                   |         |
| Gate delay: τ                           |                                           |                   |         |
| Clock frequency: f                      |                                           |                   |         |
| Dynamic power dissipation (per gate): P |                                           |                   |         |
| Chip area: A                            |                                           |                   |         |
| Power density                           |                                           |                   |         |
| Current density                         |                                           |                   |         |

**21: Scaling and Economics** 

|                                         | on MOS device                             |                   |         |
|-----------------------------------------|-------------------------------------------|-------------------|---------|
| Parameter                               | Sensitivity                               | Constant<br>Field | Lateral |
| Scaling                                 | Parameters                                |                   |         |
| Length: L                               |                                           | 1/S               | 1/S     |
| Width: W                                |                                           | 1/S               | 1       |
| Gate oxide thickness: $t_{ox}$          |                                           | 1/S               | 1       |
| Supply voltage: V <sub>DD</sub>         |                                           | 1/S               | 1       |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                           | 1/S               | 1       |
| Substrate doping: $N_d$                 |                                           | S                 | 1       |
| Device C                                | haracteristics                            |                   |         |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$         | 8                 | 8       |
| Current: $I_{dr}$                       | $\beta \left( V_{DD} - V_{c} \right)^{2}$ | 1/8               | 8       |
| Resistance: R                           | $\frac{V_{DD}}{I_{di}}$                   | 1                 | 1/8     |
| Gate capacitance: C                     |                                           |                   |         |
| Gate delay: τ                           |                                           |                   |         |
| Clock frequency: f                      |                                           |                   |         |
| Dynamic power dissipation (per gate): P |                                           |                   |         |
| Chip area: A                            |                                           |                   |         |
| Power density                           |                                           |                   |         |
| Current density                         |                                           |                   |         |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                               | Constant<br>Field | Lateral |
|-----------------------------------------|-------------------------------------------|-------------------|---------|
| Scaling                                 | Parameters                                |                   |         |
| Length: L                               |                                           | 1/S               | 1/S     |
| Width: W                                |                                           | 1/S               | 1       |
| Gate oxide thickness: $t_{\alpha}$      |                                           | 1/S               | 1       |
| Supply voltage: V <sub>DD</sub>         |                                           | 1/S               | 1       |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                           | 1/S               | 1       |
| Substrate doping: $N_d$                 |                                           | S                 | 1       |
| Device C                                | haracteristics                            |                   |         |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$         | \$                | 8       |
| Current: $I_{di}$                       | $\beta \left( V_{DD} - V_{c} \right)^{2}$ | 1/8               | 8       |
| Resistance: R                           | $\frac{V_{DD}}{I_{di}}$                   | 1                 | 1/8     |
| Gate capacitance: C                     | $\frac{WL}{t_{ox}}$                       | 1/5               | 1/8     |
| Gate delay: τ                           |                                           |                   |         |
| Clock frequency: f                      |                                           |                   |         |
| Dynamic power dissipation (per gate): P |                                           |                   |         |
| Chip area: A                            |                                           |                   |         |
| Power density                           |                                           |                   |         |
| Current density                         |                                           |                   |         |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                           | Constant<br>Field | Lateral   |
|-----------------------------------------|---------------------------------------|-------------------|-----------|
| Scaling                                 | Parameters                            |                   |           |
| Length: L                               |                                       | 1/S               | 1/S       |
| Width: W                                |                                       | 1/S               | 1         |
| Gate oxide thickness: $t_{ox}$          |                                       | 1/S               | 1         |
| Supply voltage: V <sub>DD</sub>         |                                       | 1/S               | 1         |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                       | 1/S               | 1         |
| Substrate doping: $N_A$                 |                                       | S                 | 1         |
| Device C                                | haracteristics                        |                   |           |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$     | 8                 | 8         |
| Current: $I_{di}$                       | $\beta \left( V_{DD} - V_t \right)^2$ | 1/S               | 8         |
| Resistance: R                           | $\frac{V_{DD}}{I_{di}}$               | 1                 | 1/8       |
| Gate capacitance: C                     | $\frac{WL}{t_{ox}}$                   | 1/5               | 1/8       |
| Gate delay: τ                           | RC                                    | 1/S               | $1/S^{2}$ |
| Clock frequency: f                      |                                       |                   |           |
| Dynamic power dissipation (per gate): P |                                       |                   |           |
| Chip area: A                            |                                       |                   |           |
| Power density                           |                                       |                   |           |
| Current density                         |                                       |                   |           |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                           | Constant<br>Field | Lateral   |
|-----------------------------------------|---------------------------------------|-------------------|-----------|
| Scaling                                 | Parameters                            |                   |           |
| Length: L                               |                                       | 1/S               | 1/S       |
| Width: W                                |                                       | 1/S               | 1         |
| Gate oxide thickness: $t_{ox}$          |                                       | 1/S               | 1         |
| Supply voltage: V <sub>DD</sub>         |                                       | 1/S               | 1         |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                       | 1/S               | 1         |
| Substrate doping: $N_A$                 |                                       | 8                 | 1         |
| Device C                                | haracteristics                        |                   |           |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$     | 5                 | 8         |
| Current: $I_{di}$                       | $\beta \left( V_{DD} - V_t \right)^2$ | 1/S               | S         |
| Resistance: R                           | $\frac{V_{DD}}{I_{ds}}$               | 1                 | 1/8       |
| Gate capacitance: C                     | $\frac{WL}{t_{ox}}$                   | 1/5               | 1/8       |
| Gate delay: τ                           | RC                                    | 1/S               | $1/S^{2}$ |
| Clock frequency: f                      | 1/τ                                   | S                 | $S^2$     |
| Dynamic power dissipation (per gate): P |                                       |                   |           |
| Chip area: A                            |                                       |                   |           |
| Power density                           |                                       |                   |           |
| Current density                         |                                       |                   |           |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                               | Constant<br>Field | Lateral   |
|-----------------------------------------|-------------------------------------------|-------------------|-----------|
| Scaling                                 | Parameters                                |                   |           |
| Length: L                               |                                           | 1/S               | 1/S       |
| Width: W                                |                                           | 1/S               | 1         |
| Gate oxide thickness: $t_{ox}$          |                                           | 1/S               | 1         |
| Supply voltage: V <sub>DD</sub>         |                                           | 1/S               | 1         |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                           | 1/S               | 1         |
| Substrate doping: $N_d$                 |                                           | S                 | 1         |
| Device C                                | haracteristics                            |                   |           |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$         | 8                 | 8         |
| Current: $I_{dr}$                       | $\beta \left( V_{DD} - V_{c} \right)^{2}$ | 1/8               | 8         |
| Resistance: R                           | $\frac{V_{DD}}{I_{di}}$                   | 1                 | 1/8       |
| Gate capacitance: C                     | $\frac{WL}{t_{ox}}$                       | 1/5               | 1/8       |
| Gate delay: τ                           | RC                                        | 1/S               | $1/S^{2}$ |
| Clock frequency: f                      | 1/τ                                       | S                 | $S^2$     |
| Dynamic power dissipation (per gate): P | $CV^2f$                                   | $1/S^{2}$         | S         |
| Chip area: A                            |                                           |                   | 1         |
| Power density                           |                                           |                   |           |
| Current density                         |                                           |                   |           |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                           | Constant<br>Field | Lateral   |
|-----------------------------------------|---------------------------------------|-------------------|-----------|
| Scaling                                 | Parameters                            |                   |           |
| Length: L                               |                                       | 1/S               | 1/S       |
| Width: W                                |                                       | 1/S               | 1         |
| Gate oxide thickness: t <sub>ox</sub>   |                                       | 1/S               | 1         |
| Supply voltage: VDD                     |                                       | 1/S               | 1         |
| Threshold voltage: $V_{ta}$ , $V_{tp}$  |                                       | 1/S               | 1         |
| Substrate doping: $N_d$                 |                                       | S                 | 1         |
|                                         | haracteristics                        |                   |           |
| β                                       | $\frac{W}{L}\frac{1}{t_{\rm ox}}$     | 8                 | 8         |
| Current: $I_{di}$                       | $\beta \left( V_{DD} - V_t \right)^2$ | 1/S               | 8         |
| Resistance: R                           | $\frac{V_{DD}}{I_{di}}$               | 1                 | 1/8       |
| Gate capacitance: C                     | $\frac{WL}{t_{ox}}$                   | 1/5               | 1/8       |
| Gate delay: τ                           | RC                                    | 1/S               | $1/S^{2}$ |
| Clock frequency: f                      | 1/τ                                   | 8                 | $S^2$     |
| Dynamic power dissipation (per gate): P | $CV^2f$                               | $1/S^{2}$         | S         |
| Chip area: A                            |                                       | $1/S^{2}$         | 1         |
| Power density                           |                                       |                   |           |
| Current density                         |                                       |                   |           |

**21: Scaling and Economics** 

| Parameter                               | Sensitivity                               | Constant<br>Field | Latera    |
|-----------------------------------------|-------------------------------------------|-------------------|-----------|
| Scaling                                 | Parameters                                |                   |           |
| Length: L                               |                                           | 1/S               | 1/S       |
| Width: W                                |                                           | 1/S               | 1         |
| Gate oxide thickness: t <sub>ox</sub>   |                                           | 1/S               | 1         |
| Supply voltage: $V_{DD}$                |                                           | 1/S               | 1         |
| Threshold voltage: Via, Vip             |                                           | 1/S               | 1         |
| Substrate doping: $N_d$                 |                                           | S                 | 1         |
|                                         | haracteristics                            |                   |           |
| β                                       | $\frac{W}{L}\frac{1}{t_{\text{ox}}}$      | S                 | 8         |
| Current: $I_{di}$                       | $\beta \left( V_{DD} - V_{t} \right)^{2}$ | 1/S               | 8         |
| Resistance: R                           | $\frac{V_{DD}}{I_{ds}}$                   | 1                 | 1/\$      |
| Gate capacitance: C                     | WL<br>tox                                 | 1/5               | 1/8       |
| Gate delay: τ                           | RC                                        | 1/S               | $1/S^{2}$ |
| Clock frequency: f                      | 1/τ                                       | 8                 | $S^2$     |
| Dynamic power dissipation (per gate): P | $CV^2f$                                   | $1/S^{2}$         | S         |
| Chip area: A                            |                                           | $1/S^{2}$         | 1         |
| Power density                           | P/A                                       | 1                 | S         |
| Current density                         |                                           |                   |           |

#### **21: Scaling and Economics**

| Parameter                               | Sensitivity                               | Constant<br>Field | Latera    |
|-----------------------------------------|-------------------------------------------|-------------------|-----------|
| Scaling                                 | Parameters                                |                   |           |
| Length: L                               |                                           | 1/S               | 1/S       |
| Width: W                                |                                           | 1/S               | 1         |
| Gate oxide thickness: $t_{ox}$          |                                           | 1/S               | 1         |
| Supply voltage: V <sub>DD</sub>         |                                           | 1/S               | 1         |
| Threshold voltage: Vza, Vzp             |                                           | 1/S               | 1         |
| Substrate doping: $N_d$                 |                                           | S                 | 1         |
| Device C                                | haracteristics                            |                   |           |
| β                                       | $\frac{W}{L}\frac{1}{t_{\text{ox}}}$      | 8                 | 5         |
| Current: $I_{di}$                       | $\beta \left( V_{DD} - V_{t} \right)^{2}$ | 1/S               | 8         |
| Resistance: R                           | $\frac{V_{DD}}{I_{ds}}$                   | 1                 | 1/\$      |
| Gate capacitance: C                     | $\frac{WL}{t_{ox}}$                       | 1/5               | 1/8       |
| Gate delay: τ                           | RC                                        | 1/S               | $1/S^{2}$ |
| Clock frequency: f                      | 1/τ                                       | 8                 | $S^2$     |
| Dynamic power dissipation (per gate): P | $CV^2f$                                   | $1/S^{2}$         | S         |
| Chip area: A                            |                                           | $1/S^{2}$         | 1         |
| Power density                           | P/A                                       | 1                 | S         |
| Current density                         | $I_{d}/A$                                 | S                 | S         |

**21: Scaling and Economics** 

### **Observations**

- Gate capacitance per micron is nearly independent of process
- But ON resistance \* micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)
- Velocity saturation makes lateral scaling unsustainable

#### Example

- Gate capacitance is typically about 2 fF/μm
- The FO4 inverter delay in the TT corner for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit (4/2 λ) transistor.

### Solution

- Gate capacitance is typically about 2 fF/μm
- The FO4 inverter delay in the TT corner for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit (4/2 λ) transistor.

```
G FO4 = 5 \tau = 15 RC
```

- **RC** = (0.5f) / 15 = (f/30) ps/nm
- $\Box \quad \text{If W} = 2f, \text{ R} = 8.33 \text{ k}\Omega$ 
  - Unit resistance is roughly independent of f

# **Scaling Assumptions**

- Wire thickness
  - Hold constant vs. reduce in thickness
- Wire length
  - Local / scaled interconnect
  - Global interconnect
    - Die size scaled by  $D_c \approx 1.1$

| Table 4.16         Influence of scaling on interconnect characteristics                                                                                                                                                                                                                                 |             |                      |                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-----------------------|--|
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| Parameter                                                                                                                                                                                                                                                                                               | Sensitivity | Reduced<br>Thickness | Constant<br>Thickness |  |
| Scaling Pa                                                                                                                                                                                                                                                                                              | rameters    |                      |                       |  |
| Width: w                                                                                                                                                                                                                                                                                                |             |                      |                       |  |
| Spacing: 1                                                                                                                                                                                                                                                                                              |             |                      |                       |  |
| Thickness: t                                                                                                                                                                                                                                                                                            |             | Ť                    |                       |  |
| Interlayer oxide height: b                                                                                                                                                                                                                                                                              |             | Ť                    |                       |  |
| Characteristics Per Unit Length                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| Wire resistance per unit length: $R_{w}$                                                                                                                                                                                                                                                                |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             | I                    | I                     |  |
| Fringing capacitance per unit length: $C_{wf}$                                                                                                                                                                                                                                                          |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| Parallel plate capacitance per unit length:                                                                                                                                                                                                                                                             |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| Total wire capacitance per unit length: $C_w$                                                                                                                                                                                                                                                           |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| 1                                                                                                                                                                                                                                                                                                       |             |                      |                       |  |
| A                                                                                                                                                                                                                                                                                                       |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| Crosstark holse                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
|                                                                                                                                                                                                                                                                                                         |             |                      |                       |  |
| Parallel plate capacitance per unit length:<br>$C_{up}$<br>Total wire capacitance per unit length: $C_{u}$<br>Unrepeated RC constant<br>per unit length: $t_{uw}$<br>Repeated wire RC delay per unit length: $t_{ur}$<br>(assuming constant field scaling of gates in<br>Table 4.15)<br>Crosstalk noise |             |                      |                       |  |

**21: Scaling and Economics** 

| Table 4.16         Influence of scaling on interconnect characteristics                                         |             |                      |                       |  |
|-----------------------------------------------------------------------------------------------------------------|-------------|----------------------|-----------------------|--|
| Parameter                                                                                                       | Sensitivity | Reduced<br>Thickness | Constant<br>Thickness |  |
| Scaling Pa                                                                                                      | arameters   |                      |                       |  |
| Width: w                                                                                                        |             |                      | 1/S                   |  |
| Spacing: 1                                                                                                      |             |                      | 1/S                   |  |
| Thickness: t                                                                                                    |             | 1/S                  | 1                     |  |
| Interlayer oxide height: b                                                                                      |             |                      | 1/S                   |  |
| Characteristics Per Unit Length                                                                                 |             |                      |                       |  |
| Wire resistance per unit length: $R_{\rm w}$                                                                    |             |                      |                       |  |
| Fringing capacitance per unit length: $C_{\rm sof}$                                                             |             |                      |                       |  |
| Parallel plate capacitance per unit length: $C_{\rm top}$                                                       |             |                      |                       |  |
| Total wire capacitance per unit length: $C_{\!w}$                                                               |             | -!                   |                       |  |
| Unrepeated RC constant<br>per unit length: <i>t</i> <sub>ww</sub>                                               |             |                      |                       |  |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) |             |                      |                       |  |
| Crosstalk noise                                                                                                 |             | 1                    |                       |  |

**21: Scaling and Economics** 

| Table 4.16         Influence of scaling on interconnect characteristics                                             |             |                      |                       |
|---------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-----------------------|
| Parameter                                                                                                           | Sensitivity | Reduced<br>Thickness | Constant<br>Thickness |
| Scaling Pa                                                                                                          | arameters   |                      |                       |
| Width: w                                                                                                            |             |                      | 1/S                   |
| Spacing: 1                                                                                                          |             |                      | 1/S                   |
| Thickness: t                                                                                                        |             | 1/S                  | 1                     |
| Interlayer oxide height: b                                                                                          |             |                      | 1/S                   |
| Characteristics Per Unit Length                                                                                     |             |                      |                       |
| Wire resistance per unit length: $R_{\rm w}$                                                                        |             | $S^2$                | S                     |
| Fringing capacitance per unit length: $C_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |             |                      |                       |
| Parallel plate capacitance per unit length: $C_{\rm up}$                                                            |             | 1                    |                       |
| Total wire capacitance per unit length: $C_{\!\scriptscriptstyle w}$                                                |             |                      |                       |
| Unrepeated RC constant<br>per unit length: $t_{ww}$                                                                 |             |                      |                       |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15)     |             |                      |                       |
| Crosstalk noise                                                                                                     |             | 1                    | 1                     |

**21: Scaling and Economics** 

| Parameter                                                                                                       | Sensitivity    | Reduced   | Constant  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------|--|
| 0.1                                                                                                             |                | Thickness | Thickness |  |
| Scaling Pa                                                                                                      | arameters      |           |           |  |
| Width: w                                                                                                        |                |           | 1/S       |  |
| Spacing: 1                                                                                                      |                |           | 1/S       |  |
| Thickness: /                                                                                                    |                | 1/S       | 1         |  |
| Interlayer oxide height: b                                                                                      |                |           | 1/S       |  |
| Characteristics Per Unit Length                                                                                 |                |           |           |  |
| Wire resistance per unit length: $R_{\rm w}$                                                                    | $\frac{1}{wt}$ | $S^2$     | S         |  |
| Fringing capacitance per unit length: $C_{\rm wf}$                                                              | $\frac{t}{s}$  | 1         | S         |  |
| Parallel plate capacitance per unit length: $C_{\rm top}$                                                       |                |           |           |  |
| Total wire capacitance per unit length: $C_{\!w}$                                                               |                |           |           |  |
| Unrepeated RC constant<br>per unit length: 4ww                                                                  |                |           |           |  |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) |                |           |           |  |
| Crosstalk noise                                                                                                 |                | 1         |           |  |

**21: Scaling and Economics** 

| Parameter                                                                                                       | Sensitivity    | Reduced<br>Thickness | Constant<br>Thickness |  |
|-----------------------------------------------------------------------------------------------------------------|----------------|----------------------|-----------------------|--|
| Scaling P                                                                                                       | arameters      |                      |                       |  |
| Width: w                                                                                                        |                |                      | 1/S                   |  |
| Spacing: s                                                                                                      |                |                      | 1/S                   |  |
| Thickness: t                                                                                                    |                | 1/S                  | 1                     |  |
| Interlayer oxide height: b                                                                                      |                |                      | 1/S                   |  |
| Characteristics Per Unit Length                                                                                 |                |                      |                       |  |
| Wire resistance per unit length: $R_{\omega}$                                                                   | $\frac{1}{wt}$ | $S^2$                | S                     |  |
| Fringing capacitance per unit length: $C_{{\rm wf}}$                                                            | $\frac{t}{s}$  | 1                    | S                     |  |
| Parallel plate capacitance per unit length: $C_{\rm top}$                                                       | $\frac{w}{b}$  | 1                    | 1                     |  |
| Total wire capacitance per unit length: ${\cal G}_w$                                                            |                | -                    |                       |  |
| Unrepeated RC constant<br>per unit length: #ww                                                                  |                |                      |                       |  |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) |                |                      |                       |  |
| Crosstalk noise                                                                                                 |                |                      | 1                     |  |

**21: Scaling and Economics** 

| Parameter                                                                                                       | Sensitivity       | Reduced<br>Thickness | Constant<br>Thickness |
|-----------------------------------------------------------------------------------------------------------------|-------------------|----------------------|-----------------------|
| Scaling Pa                                                                                                      | arameters         |                      |                       |
| Width: w                                                                                                        |                   |                      | 1/S                   |
| Spacing: 1                                                                                                      |                   |                      | 1/S                   |
| Thickness: t                                                                                                    |                   | 1/S                  | 1                     |
| Interlayer oxide height: b                                                                                      |                   |                      | 1/8                   |
| Characteristics Per Unit Length                                                                                 |                   |                      |                       |
| Wire resistance per unit length: $R_{\rm w}$                                                                    | $\frac{1}{wt}$    | $S^2$                | S                     |
| Fringing capacitance per unit length: $C_{\rm wf}$                                                              | $\frac{t}{s}$     | 1                    | S                     |
| Parallel plate capacitance per unit length: $C_{\rm top}$                                                       | $\frac{w}{b}$     | 1                    | 1                     |
| Total wire capacitance per unit length: $G_w$                                                                   | $C_{wf} + C_{wp}$ | 1                    | between 1, S          |
| Unrepeated RC constant<br>per unit length: t <sub>ww</sub>                                                      |                   |                      |                       |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) |                   |                      |                       |
| Crosstalk noise                                                                                                 |                   |                      | 1                     |

**21: Scaling and Economics** 

| Parameter                                                                                                       | Sensitivity            | Reduced<br>Thickness | Constant<br>Thickness        |
|-----------------------------------------------------------------------------------------------------------------|------------------------|----------------------|------------------------------|
| Scaling Pa                                                                                                      | arameters              |                      |                              |
| Width: w                                                                                                        |                        |                      | 1/S                          |
| Spacing: 1                                                                                                      |                        |                      | 1/S                          |
| Thickness: t                                                                                                    |                        | 1/S                  | 1                            |
| Interlayer oxide height: b                                                                                      |                        |                      | 1/S                          |
| Characteristics Per Unit Length                                                                                 |                        |                      |                              |
| Wire resistance per unit length: $R_{\rm w}$                                                                    | $\frac{1}{wt}$         | $S^2$                | S                            |
| Fringing capacitance per unit length: $C_{\rm wf}$                                                              | $\frac{t}{s}$          | 1                    | S                            |
| Parallel plate capacitance per unit length: $C_{\rm top}$                                                       | $\frac{w}{b}$          | 1                    | 1                            |
| Total wire capacitance per unit length: $C_{\!\scriptscriptstyle \rm W}$                                        | $C_{wf} + C_{wp}$      | 1                    | between 1, S                 |
| Unrepeated RC constant<br>per unit length: 4ww                                                                  | $R_{\omega}C_{\omega}$ | $S^2$                | between S,<br>S <sup>2</sup> |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) |                        |                      |                              |
| Crosstalk noise                                                                                                 |                        |                      | 1                            |

**21: Scaling and Economics** 

| Parameter                                                                                                       | Sensitivity       | Reduced<br>Thickness | Constant<br>Thickness |
|-----------------------------------------------------------------------------------------------------------------|-------------------|----------------------|-----------------------|
| Scaling Pa                                                                                                      | arameters         |                      |                       |
| Width: w                                                                                                        |                   |                      | 1/S                   |
| Spacing: 1                                                                                                      |                   |                      | 1/S                   |
| Thickness: t                                                                                                    |                   | 1/S                  | 1                     |
| Interlayer oxide height: b                                                                                      |                   |                      | 1/S                   |
| Characteristics Per Unit Length                                                                                 |                   |                      |                       |
| Wire resistance per unit length: $R_{\rm w}$                                                                    | $\frac{1}{wt}$    | $S^2$                | S                     |
| Fringing capacitance per unit length: $C_{\rm wf}$                                                              | $\frac{t}{s}$     | 1                    | S                     |
| Parallel plate capacitance per unit length: $C_{up}$                                                            | $\frac{w}{b}$     | 1                    | 1                     |
| Total wire capacitance per unit length: $C_{\!\scriptscriptstyle w}$                                            | $C_{wf} + C_{wp}$ | 1                    | between 1, S          |
| Unrepeated RC constant<br>per unit length: t <sub>ww</sub>                                                      | $R_{w}C_{w}$      | S <sup>2</sup>       | between S,<br>S²      |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) | $\sqrt{RCR_wC_w}$ | <b>√</b> S           | between 1, $\sqrt{S}$ |

21: Scaling and Economics

|                                                                                                                 |                   | characteristics      |                              |
|-----------------------------------------------------------------------------------------------------------------|-------------------|----------------------|------------------------------|
| Parameter                                                                                                       | Sensitivity       | Reduced<br>Thickness | Constant<br>Thickness        |
| Scaling P                                                                                                       | arameters         |                      |                              |
| Width: w                                                                                                        |                   |                      | 1/S                          |
| Spacing: 1                                                                                                      |                   |                      | 1/S                          |
| Thickness: t                                                                                                    |                   | 1/S                  | 1                            |
| Interlayer oxide height: b                                                                                      |                   |                      | 1/8                          |
| Characteristics Per Unit Length                                                                                 |                   |                      |                              |
| Wire resistance per unit length: $R_{\rm w}$                                                                    | $\frac{1}{wt}$    | $S^2$                | S                            |
| Fringing capacitance per unit length: $C_{\rm \omega f}$                                                        | $\frac{t}{s}$     | 1                    | S                            |
| Parallel plate capacitance per unit length: $C_{\rm top}$                                                       | $\frac{w}{b}$     | 1                    | 1                            |
| Total wire capacitance per unit length: $C_{\!w}$                                                               | $C_{wf} + C_{wp}$ | 1                    | between 1, S                 |
| Unrepeated RC constant<br>per unit length: £ww                                                                  | $R_{w}C_{w}$      | S <sup>2</sup>       | between S,<br>S <sup>2</sup> |
| Repeated wire RC delay per unit length: $t_{wr}$<br>(assuming constant field scaling of gates in<br>Table 4.15) | $\sqrt{RCR_wC_w}$ | $\sqrt{s}$           | between 1, $\sqrt{S}$        |
| Crosstalk noise                                                                                                 | $\frac{t}{s}$     | 1                    | S                            |

#### **21: Scaling and Economics**

### **Interconnect Delay**

 
 Table 4.16
 Influence of scaling on interconnect characteristics
 Sensitivity Reduced Constant Parameter Thickness Thickness **Scaling Parameters** Width: w 1/S1/SSpacing: s Thickness: t 1/S1 Interlayer oxide height: h 1/SLocal/Scaled Interconnect Characteristics Length: / Unrepeated wire RC delay Repeated wire delay **Global Interconnect Characteristics** Length: l Unrepeated wire RC delay Repeated wire delay

| Table 4.16         Influence of scaling on interconnect characteristics |             |                      |                       |  |  |  |
|-------------------------------------------------------------------------|-------------|----------------------|-----------------------|--|--|--|
| Parameter                                                               | Sensitivity | Reduced<br>Thickness | Constant<br>Thickness |  |  |  |
| Scaling Parameters                                                      |             |                      |                       |  |  |  |
| Width: $w$                                                              |             | 1                    | / <i>S</i>            |  |  |  |
| Spacing: s                                                              |             | 1                    | 1/S                   |  |  |  |
| Thickness: t                                                            |             | 1/S                  | 1                     |  |  |  |
| Interlayer oxide height: h                                              |             | 1                    | /S                    |  |  |  |
| Local/Scaled Interconnect Characteristics                               |             |                      |                       |  |  |  |
| Length: /                                                               |             | 1                    | /S                    |  |  |  |
| Unrepeated wire RC delay                                                |             |                      |                       |  |  |  |
| Repeated wire delay                                                     |             | 1                    |                       |  |  |  |
| Global Interconnect Characteristics                                     |             |                      |                       |  |  |  |
| Length: /                                                               |             |                      |                       |  |  |  |
| Unrepeated wire RC delay                                                |             | 1                    |                       |  |  |  |
| Repeated wire delay                                                     |             |                      |                       |  |  |  |

| Table 4.16         Influence of scaling on interconnect characteristics |              |                      |                            |  |  |  |
|-------------------------------------------------------------------------|--------------|----------------------|----------------------------|--|--|--|
| Parameter                                                               | Sensitivity  | Reduced<br>Thickness | Constant<br>Thickness      |  |  |  |
| Scaling Parameters                                                      |              |                      |                            |  |  |  |
| Width: $w$                                                              |              |                      | 1/S                        |  |  |  |
| Spacing: s                                                              |              |                      | 1/S                        |  |  |  |
| Thickness: t                                                            |              | 1/S                  | 1                          |  |  |  |
| Interlayer oxide height: h                                              |              |                      | 1/S                        |  |  |  |
| Local/Scaled Interconnect Characteristics                               |              |                      |                            |  |  |  |
| Length: /                                                               |              |                      | 1/S                        |  |  |  |
| Unrepeated wire RC delay                                                | $l^2 t_{wu}$ | 1                    | between<br>1/ <i>S</i> , 1 |  |  |  |
| Repeated wire delay                                                     |              |                      |                            |  |  |  |
| Global Interconnect Characteristics                                     | -            |                      |                            |  |  |  |
| Length: /                                                               |              |                      |                            |  |  |  |
| Unrepeated wire RC delay                                                |              |                      |                            |  |  |  |
| Repeated wire delay                                                     |              |                      |                            |  |  |  |

| Table 4.16         Influence of scaling on interconnect characteristics |                  |                                        |                            |  |  |  |
|-------------------------------------------------------------------------|------------------|----------------------------------------|----------------------------|--|--|--|
| Parameter                                                               | Sensitivity      | Reduced<br>Thickness                   | Constant<br>Thickness      |  |  |  |
| Scaling Parameters                                                      |                  |                                        |                            |  |  |  |
| Width: $w$                                                              |                  | 1                                      | 1/ <i>S</i>                |  |  |  |
| Spacing: s                                                              |                  | 1                                      | 1/S                        |  |  |  |
| Thickness: t                                                            |                  | 1/S                                    | 1                          |  |  |  |
| Interlayer oxide height: h                                              |                  | 1                                      | 1/S                        |  |  |  |
| Local/Scaled Interconnect Characteristics                               |                  |                                        |                            |  |  |  |
| Length: /                                                               |                  | 1                                      | 1/S                        |  |  |  |
| Unrepeated wire RC delay                                                | $l^2 t_{wu}$     | 1                                      | between<br>1/ <i>S</i> , 1 |  |  |  |
| Repeated wire delay                                                     | lt <sub>wr</sub> | $\sqrt{1/S}$ between $1/S, \sqrt{1/S}$ |                            |  |  |  |
| Global Interconnect Characteristics                                     |                  |                                        |                            |  |  |  |
| Length: /                                                               |                  |                                        |                            |  |  |  |
| Unrepeated wire RC delay                                                |                  |                                        |                            |  |  |  |
| Repeated wire delay                                                     |                  |                                        |                            |  |  |  |

| Table 4.16         Influence of scaling on interconnect characteristics |                  |                                           |                            |  |  |  |  |
|-------------------------------------------------------------------------|------------------|-------------------------------------------|----------------------------|--|--|--|--|
| Parameter                                                               | Sensitivity      | Reduced<br>Thickness                      | Constant<br>Thickness      |  |  |  |  |
| Scaling Parameters                                                      |                  |                                           |                            |  |  |  |  |
| Width: $w$                                                              |                  | 1                                         | 1/S                        |  |  |  |  |
| Spacing: s                                                              |                  | 1                                         | 1/S                        |  |  |  |  |
| Thickness: t                                                            |                  | 1/S                                       | 1                          |  |  |  |  |
| Interlayer oxide height: h                                              |                  | 1                                         | 1/S                        |  |  |  |  |
| Local/Scaled Interconnect Characteristics                               |                  |                                           |                            |  |  |  |  |
| Length: /                                                               |                  | 1                                         | 1/S                        |  |  |  |  |
| Unrepeated wire RC delay                                                | $l^2 t_{wu}$     | 1                                         | between<br>1/ <i>S</i> , 1 |  |  |  |  |
| Repeated wire delay                                                     | lt <sub>wr</sub> | $\sqrt{1/S}$ between $1/S$ , $\sqrt{1/S}$ |                            |  |  |  |  |
| Global Interconnect Characteristics                                     |                  |                                           |                            |  |  |  |  |
| Length: /                                                               |                  | $D_{c}$                                   |                            |  |  |  |  |
| Unrepeated wire RC delay                                                |                  |                                           |                            |  |  |  |  |
| Repeated wire delay                                                     |                  |                                           |                            |  |  |  |  |

| Table 4.16         Influence of scaling on interconnect characteristics |                                |                                           |                                                                                      |  |  |
|-------------------------------------------------------------------------|--------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Parameter                                                               | Sensitivity                    | Reduced<br>Thickness                      | Constant<br>Thickness                                                                |  |  |
| Scaling P                                                               | arameters                      |                                           |                                                                                      |  |  |
| Width: $w$                                                              |                                |                                           | 1/S                                                                                  |  |  |
| Spacing: s                                                              |                                |                                           | 1/ <i>S</i>                                                                          |  |  |
| Thickness: t                                                            |                                | 1/S                                       | 1                                                                                    |  |  |
| Interlayer oxide height: h                                              |                                | :                                         | 1/S                                                                                  |  |  |
| Local/Scaled Interconnect Characteristics                               |                                |                                           |                                                                                      |  |  |
| Length: /                                                               |                                |                                           | 1/S                                                                                  |  |  |
| Unrepeated wire RC delay                                                | $l^2 t_{wu}$                   | 1 between<br>1/ <i>S</i> , 1              |                                                                                      |  |  |
| Repeated wire delay                                                     | lt <sub>wr</sub>               | $\sqrt{1/S}$ between $1/S$ , $\sqrt{1/S}$ |                                                                                      |  |  |
| Global Interconnect Characteristics                                     |                                |                                           |                                                                                      |  |  |
| Length: /                                                               |                                | $D_{c}$                                   |                                                                                      |  |  |
| Unrepeated wire RC delay                                                | l <sup>2</sup> t <sub>wu</sub> | $S^2 D_c^2$                               | between<br>SD <sup>2</sup> <sub>c</sub> , S <sup>2</sup> D <sup>2</sup> <sub>c</sub> |  |  |
| Repeated wire delay                                                     |                                |                                           |                                                                                      |  |  |

| Table 4.16         Influence of scaling on interconnect characteristics |                    |                                           |                                |  |  |  |  |
|-------------------------------------------------------------------------|--------------------|-------------------------------------------|--------------------------------|--|--|--|--|
| Parameter                                                               | Sensitivity        | Reduced<br>Thickness                      | Constant<br>Thickness          |  |  |  |  |
| Scaling Pa                                                              | Scaling Parameters |                                           |                                |  |  |  |  |
| Width: $w$                                                              |                    | 1                                         | 1/S                            |  |  |  |  |
| Spacing: s                                                              |                    | 1                                         | 1/S                            |  |  |  |  |
| Thickness: t                                                            |                    | 1/S                                       | 1                              |  |  |  |  |
| Interlayer oxide height: h                                              |                    | 1                                         | 1/S                            |  |  |  |  |
| Local/Scaled Interconnect Characteristics                               |                    |                                           |                                |  |  |  |  |
| Length: /                                                               |                    | 1                                         | 1/S                            |  |  |  |  |
| Unrepeated wire RC delay                                                | $l^2 t_{wu}$       | 1                                         | between<br>1/ <i>S</i> , 1     |  |  |  |  |
| Repeated wire delay                                                     | lt <sub>wr</sub>   | $\sqrt{1/S}$ between $1/S$ , $\sqrt{1/S}$ |                                |  |  |  |  |
| Global Interconnect Characteristics                                     |                    |                                           |                                |  |  |  |  |
| Length: /                                                               |                    | $D_{c}$                                   |                                |  |  |  |  |
| Unrepeated wire RC delay                                                | $l^2 t_{wu}$       | $S^2 D_c^2$                               | between $SD_c^2$ , $S^2D_c^2$  |  |  |  |  |
| Repeated wire delay                                                     | lt <sub>wr</sub>   | $D_c \sqrt{S}$                            | between $D_c$ , $D_c \sqrt{S}$ |  |  |  |  |

#### **21: Scaling and Economics**

#### **Observations**

- Capacitance per micron is remaining constant
  - About 0.2 fF/ $\mu$ m
  - Roughly 1/10 of gate capacitance
- □ Local wires are getting faster
  - Not quite tracking transistor improvement
  - But not a major problem
- □ Global wires are getting slower
  - No longer possible to cross chip in one cycle

### ITRS

#### Semiconductor Industry Association forecast

- Intl. Technology Roadmap for Semiconductors

| Table 4.17 Predictions from the 2002 ITRS |         |         |           |         |         |         |
|-------------------------------------------|---------|---------|-----------|---------|---------|---------|
| Year                                      | 2001    | 2004    | 2007      | 2010    | 2013    | 2016    |
| Feature size (nm)                         | 130     | 90      | 65        | 45      | 32      | 22      |
| $V_{DD}(\mathbf{V})$                      | 1.1-1.2 | 1-1.2   | 0.7 - 1.1 | 0.6-1.0 | 0.5-0.9 | 0.4–0.9 |
| Millions of transistors/die               | 193     | 385     | 773       | 1564    | 3092    | 6184    |
| Wiring levels                             | 8-10    | 9-13    | 10-14     | 10-14   | 11–15   | 11–15   |
| Intermediate wire pitch (nm)              | 450     | 275     | 195       | 135     | 95      | 65      |
| Interconnect dielectric                   | 3-3.6   | 2.6-3.1 | 2.3-2.7   | 2.1     | 1.9     | 1.8     |
| constant                                  |         |         |           |         |         |         |
| I/O signals                               | 1024    | 1024    | 1024      | 1280    | 1408    | 1472    |
| Clock rate (MHz)                          | 1684    | 3990    | 6739      | 11511   | 19348   | 28751   |
| FO4 delays/cycle                          | 13.7    | 8.4     | 6.8       | 5.8     | 4.8     | 4.7     |
| Maximum power (W)                         | 130     | 160     | 190       | 218     | 251     | 288     |
| DRAM capacity (Gbits)                     | 0.5     | 1       | 4         | 8       | 32      | 64      |

**21: Scaling and Economics** 

# **Scaling Implications**

- Improved Performance
- Improved Cost
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

#### **Cost Improvement**

# In 2003, \$0.01 bought you 100,000 transistors Moore's Law is still going strong



#### **Interconnect Woes**

□ SIA made a gloomy forecast in 1997

 Delay would reach minimum at 250 – 180 nm, then get worse because of wires

But...



[SIA97]

**21: Scaling and Economics** 

#### **Interconnect Woes**

□ SIA made a gloomy forecast in 1997

 Delay would reach minimum at 250 – 180 nm, then get worse because of wires

But...

- Misleading scale
- Global wires

100 kgate blocks ok <sup>Dela</sup> (ps)



#### **Reachable Radius**

- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
  - Just as off-chip memory latencies were tolerated



#### **Dynamic Power**

□ Intel VP Patrick Gelsinger (ISSCC 2001)

 If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.

- "Business as usual will not work in the future."

- Intel stock dropped 8%on the next day
- But attention to power is increasing



21: Scaling and Economics

#### **Static Power**

#### $\Box$ V<sub>DD</sub> decreases

- Save dynamic power
- Protect thin gate oxides and short channels
- No point in high value because of velocity sat.
- V<sub>t</sub> must decrease to
   maintain device performance
- But this causes exponential increase in OFF leakage
  - Angle Angle



## Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
  - Bigger design teams
    - Up to 500 for a high-end microprocessor
  - More expensive design cost
  - Pressure to raise productivity
    - Rely on synthesis, IP blocks
  - Need for good engineering managers

# **Physical Limits**

- □ Will Moore's Law run out of steam?
  - Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
  - Dynamic power
  - Subthreshold leakage, tunneling
  - Short channel effects
  - Fabrication costs
  - Electromigration
  - Interconnect delay
- ☐ Rumors of demise have been exaggerated

### **VLSI Economics**

□ Selling price S<sub>total</sub>

$$-S_{total} = C_{total} / (1-m)$$

- m = profit margin
- $\Box C_{total} = total cost$ 
  - Nonrecurring engineering cost (NRE)
  - Recurring cost
  - Fixed cost

#### NRE

#### Engineering cost

- Depends on size of design team
- Include benefits, training, computers
- CAD tools:
  - Digital front end: \$10K
  - Analog front end: \$100K
  - Digital back end: \$1M
- Prototype manufacturing
  - Mask costs: \$500k 1M in 130 nm process
  - Test fixture and package tooling

# **Recurring Costs**

#### □ Fabrication

- Wafer cost / (Dice per wafer \* Yield)
- Wafer cost: \$500 \$3000

- Dice per wafer: 
$$N = p \left[ \frac{r^2}{A} - \frac{2r}{\sqrt{2A}} \right]$$

- Yield: 
$$Y = e^{-AD}$$

- For small A,  $Y \approx 1$ , cost proportional to area
- For large A,  $Y \rightarrow 0$ , cost increases exponentially
- Packaging

#### **T**est

#### **Fixed Costs**

- Data sheets and application notes
- Marketing and advertising
- Yield analysis

#### Example

- You want to start a company to build a wireless communications chip. How much venture capital must you raise?
- Because you are smarter than everyone else, you can get away with a small team in just two years:
  - Seven digital designers
  - Three analog designers
  - Five support personnel

#### Solution

- Digital designers:
  - salary
  - overhead
  - computer
  - CAD tools
  - Total:
- Analog designers
  - salary
  - overhead
  - computer
  - CAD tools
  - Total:

- □ Support staff
  - salary
  - overhead
  - computer
  - Total:
- Fabrication
  - Back-end tools:
  - Masks:
  - Total:
- Summary

#### Solution

- Digital designers:
  - \$70k salary
  - \$30k overhead
  - \$10k computer
  - \$10k CAD tools
  - Total: \$120k \* 7 = \$840k
- Analog designers
  - \$100k salary
  - \$30k overhead
  - \$10k computer
  - \$100k CAD tools
  - Total: \$240k \* 3 = \$720k

- Support staff
  - \$45k salary
  - \$20k overhead
  - \$5k computer
  - Total: \$70k \* 5 = \$350k
- □ Fabrication
  - Back-end tools: \$1M
  - Masks: \$1M
  - Total: \$2M / year
- Summary
  - 2 years @ \$3.91M / year
  - \$8M design & prototype

#### **Cost Breakdown**

New chip design is fairly capital-intensive
Maybe you can do it for less?

