Introduction to CMOS VLSI Design

Lecture 15: Nonideal Transistors

David Harris

Harvey Mudd College Spring 2004

Outline

- Transistor I-V Review
- Nonideal Transistor Behavior
 - Velocity Saturation
 - Channel Length Modulation
 - Body Effect
 - Leakage
 - Temperature Sensitivity
- Process and Environmental Variations
 - Process Corners

Ideal nMOS I-V Plot

□ 180 nm TSMC process

15: Nonideal Transistors

CMOS VLSI Design

Slide 4

Simulated nMOS I-V Plot

- □ 180 nm TSMC process
- □ BSIM 3v3 SPICE models
- What differs?

15: Nonideal Transistors

Simulated nMOS I-V Plot

- □ 180 nm TSMC process
- BSIM 3v3 SPICE models
- What differs?
 - Less ON current
 - No square law
 - Current increases in saturation

15: Nonideal Transistors

Velocity Saturation

□ We assumed carrier velocity is proportional to E-field

$$- v = \mu E_{lat} = \mu V_{ds}/L$$

At high fields, this ceases to be true

- Carriers scatter off atoms
- Velocity reaches v_{sat}
 - Electrons: 6-10 x 10⁶ cm/s
 - Holes: 4-8 x 10⁶ cm/s
- Better model

$$v = \frac{\mu E_{\text{lat}}}{1 + \frac{E_{\text{lat}}}{E_{\text{sat}}}} \Longrightarrow v_{\text{sat}} = \mu E_{\text{sat}}$$

15: Nonideal Transistors

Vel Sat I-V Effects

Ideal transistor ON current increases with V_{DD}²

$$I_{ds} = \mathbf{m}C_{ox} \frac{W}{L} \frac{(V_{gs} - V_t)^2}{2} = \frac{\mathbf{b}}{2} (V_{gs} - V_t)^2$$

Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{ox} W \left(V_{gs} - V_t \right) v_{max}$$

Real transistors are partially velocity saturated

– Approximate with α -power law model

$$- ~ \textbf{I}_{\text{ds}} \propto V_{\text{DD}}{}^{\alpha}$$

 $-1 < \alpha < 2$ determined empirically

α -Power Model

Channel Length Modulation

□ Reverse-biased p-n junctions form a *depletion region*

- Region between n and p with no carriers
- Width of depletion L_d region grows with reverse bias
- $L_{eff} = L L_{d}$
- □ Shorter L_{eff} gives more current
 - $I_{\rm ds}$ increases with $V_{\rm ds}$
 - Even in saturation

Chan Length Mod I-V $I_{ds}(\mu A)$ 400 $I_{ds} = \frac{\mathbf{b}}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \mathbf{I} V_{ds} \right)$ $V_{gs} = 1.8$ 300 $V_{gs} = 1.5$ 200 $V_{as} = 1.2$ 100 $V_{gs} = 0.9$

 $\Box \quad \lambda = channel \ length \ modulation \ coefficient$

- not feature size
- Empirically fit to I-V characteristics

15: Nonideal Transistors

CMOS VLSI Design

1.8 V_{ds}

 $V_{gs} = 0.6$

0.9

1.2

1.5

0.3

0

0.6

Body Effect

- \Box V_t: gate voltage necessary to invert channel
- Increases if source voltage increases because source is connected to the channel
- □ Increase in V_t with V_s is called the *body effect*

$$V_t = V_{t0} + \boldsymbol{g} \left(\sqrt{\boldsymbol{f}_s + V_{sb}} - \sqrt{\boldsymbol{f}_s} \right)$$

- $\Box \quad \phi_{s} = surface \ potential \ at \ threshold \\ f_{s} = 2v_{T} \ln \frac{N_{A}}{n_{i}} \\ \ Depends \ on \ doping \ level \ N_{A}$
 - And intrinsic carrier concentration n_i
- \Box γ = body effect coefficient

$$\boldsymbol{g} = \frac{t_{\text{ox}}}{\boldsymbol{e}_{\text{ox}}} \sqrt{2q\boldsymbol{e}_{\text{si}}N_A} = \frac{\sqrt{2q\boldsymbol{e}_{\text{si}}N_A}}{C_{\text{ox}}}$$

15: Nonideal Transistors

CMOS VLSI Design

Slide 13

OFF Transistor Behavior

- What about current in cutoff?
- Simulated results
- What differs?
 - Current doesn't go to 0 in cutoff

Leakage Sources

- Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
- Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultrathin gate dielectric
- Subthreshold leakage is the biggest source in modern transistors

Subthreshold Leakage

□ Subthreshold leakage exponential with V_{as}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right) \qquad \qquad I_{ds0} = \boldsymbol{b} v_T^2 e^{1.8}$$

n is process dependent, typically 1.4-1.5

15: Nonideal Transistors

DIBL

Drain-Induced Barrier Lowering

- Drain voltage also affect Vt

$$V_t' = V_t - \mathbf{h}V_{ds}$$

High drain voltage causes subthreshold leakage to _____.

DIBL

Drain-Induced Barrier Lowering

– Drain voltage also affect V_t

$$V_t' = V_t - hV_{ds}$$

High drain voltage causes subthreshold leakage to increase.

Junction Leakage

Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

 $\hfill\Box$ I_s depends on doping levels

- And area and perimeter of diffusion regions

Temperature Sensitivity Increasing temperature Reduces mobility – Reduces V_t \Box I_{ON} decreases with temperature □ I_{OFF} increases with temperature $\sqrt{I_{de}}$ increasing temperature Vas **15: Nonideal Transistors CMOS VLSI Design** Slide 22

So What?

- □ So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

Environmental Variation

 $\hfill\square$ V_{DD} and T also vary in time and space

Fast:

Corner	Voltage Temperature	
F		
Т	1.8	70 C
S		

Environmental Variation

- $\hfill\square\hfill V_{DD}$ and T also vary in time and space
- General Fast:
 - V_{DD}: high– T: low

Corner	Voltage	Temperature	
F	1.98	0 C	
Т	1.8	70 C	
S	1.62	125 C	

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

□ Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time				
Power				
Subthrehold				
leakage				
Pseudo-nMOS				

15: Nonideal Transistors

CMOS VLSI Design

Slide 29

Important Corners

□ Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthrehold leakage	F	F	F	S
Pseudo-nMOS	S	F	?	?

15: Nonideal Transistors