
 1

CMOS VLSI DesignH
arris

Lab 4: Controller Design

The controller for your MIPS processor is responsible for generating the signals to the
datapath to fetch and execute each instruction. It lacks the regular structure of the
datapath. Therefore, you will use a standard cell methodology to place and route the
gates. First, you will design the ALU Control logic by hand and place and route it
yourself. You will discover how this becomes tedious and error-prone even for small
designs. For larger blocks, especially designs that might require bug fixes late in the
design process, hand place and route becomes exceedingly onerous.

Therefore, you will learn about synthesis and place and route. You will complete a
Verilog Hardware Description Language (HDL) description of the MIPS Controller.
Then you will use the industry-standard Synopsys Design Analyzer tool to synthesize the
Verilog into a gate-level netlist. You will import this netlist into Electric and use
Electric’s Silicon Compiler tool to place and route the design.

If you are unfamiliar with Verilog or want a review, please refer to Appendix A of
CMOS VLSI Design.

1. Standard Cell Library

In your datapath cells, you used horizontal metal2 lines to route over the cells along a
datapath bitslice. In a standard cell place and route methodology, you will not be doing
over-the-cell routing. Therefore, you can usually achieve better cell density by running
metal1 horizontally and using metal2 vertically to provide inputs to the cells. Moreover,
the elementary gates in the standard cell library are less complex than the full adder in the
datapath. Therefore, we will use a 60λ cell height rather than 80λ.

Copy your lab3_xx.elib library to lab4_xx.elib. The library has a number of standard
cells already provided including inverters, NAND, NOR, and AOI gates, and a latch.
Their names begin with std_. The layout for the 3-input NAND is missing. To become
familiar with standard cell layout styles, create the std_nand3 layout. It should be done
in the same style as the std_nor3 gate obeying the following guidelines:

 2

• VDD and GND run horizontally in 8λ-wide Metal 1 on a 60λ center-to-center spacing
• all transistors, wires, and well contacts fit between the power and ground lines
• all transistors should be within 100λ of a well contact
• avoid long routes in diffusion
• inputs and outputs appear on metal2 so that a metal2 line can be connected from

above without obstruction. Do not place an input or output directly on a via because
it will look funny when you look at an instance of the cell higher up in the hierarchy.
Instead, attach a metal2 line to the via and place the export on the metal2 pin.

Perform the usual DRC, ERC, and NCC verification.

2. ALUControl Logic

The ALUControl logic, shown in the lower right oval in Figure 1 of Lab 1, is responsible
for decoding a 2-bit ALUOp signal and a 6-bit funct field of the instruction to produce
three multiplexer control lines for the ALU. Two of the lines select which type of ALU
operation is performed and the third determines if input B is inverted.

module alucontrol(input [1:0] aluop,
 input [5:0] funct,
 output reg [2:0] alucontrol);

 // FUNCT field definitions
 parameter ADD = 6'b100000;
 parameter SUB = 6'b100010;
 parameter AND = 6'b100100;
 parameter OR = 6'b100101;
 parameter SLT = 6'b101010;

 // The Synopsys full_case directives are given on each case statement
 // to tell the synthesizer that all the cases we care about are handled.
 // This avoids needing a default that takes extra logic gates or implying
 // a latch.

 always @(*)
 case (aluop) // synopsys full_case
 2'b00: alucontrol <= 3'b010; // add (for lb/sb/addi)
 2'b01: alucontrol <= 3'b110; // sub (for beq)
 2'b10: case (funct) // synopsys full_case
 ADD: alucontrol <= 3'b010; // add (for add)
 SUB: alucontrol <= 3'b110; // subtract (for sub)
 AND: alucontrol <= 3'b000; // logical and (for and)
 OR: alucontrol <= 3'b001; // logical or (for or)
 SLT: alucontrol <= 3'b111; // set on less (for slt)
 // no other functions are legal
 endcase
 // aluop=11 is never given
 endcase
endmodule

Figure 1: Verilog code for ALUControl

The function of the ALUControl logic is defined in Figure 5.14 of Hennessy & Patterson.
The Verilog code in Figure 1 is an equivalent description of the logic. Note that the main
controller will never produce an ALUOp of 11, so that case need not be considered. The

 3

processor only handles the five R-type instructions listed, so you can treat the result of
other funct codes as don’t cares and optimize your logic accordingly.

Create an alucontrol schematic. Using the logic gates provided, design a combinational
circuit to compute the ALUControl[2:0] signals from ALUOp[1:0] and Funct[5:0]. As
Funct[5:4] are always the same for any legal operation, you may omit them as don’t
cares. Try to minimize the number of gates required because that will save you time on
the layout. Create an IRSIM .cmd file with assertions and simulate your design to ensure
it is correct. You may build off the alucontrol.cmd file provided.

Next, create an alucontrol layout. Use metal2 vertically and metal1 horizontally. Use a
routing channel above or below the cells to make the connections. For example, the
figure below illustrates an SR latch created from two std_nand2 gates in the standard cell
layout style with a routing channel above the cells. When you are done, provide exports
for VDD, GND, and the eight inputs and three outputs.

Figure 2: SR Latch using standard cell layout style

Run DRC, ERC, and NCC and fix any problems you might find. If your schematic and
layout do not match, consider simulating the layout to help track down any bugs.

3. Controller Verilog

The MIPS Controller, shown as the upper oval in Figure 1 of Lab 1, is responsible for
decoding the instruction and generating mux select and register enable signals for the
datapath. In our multicycle MIPS design, it is implemented as a finite state machine, as
shown in Figure 3.1 The Verilog code describing this FSM is named controller.v. Copy
controller.v from the class directory to controller_xx.v in your directory.

Look through the Verilog and identify the major portions. The next state logic describes
the state transitions of the FSM. The output logic determines which outputs will be
asserted in each state. Note that the Verilog also contains the AND/OR gates required to
compute PCChange, the write enable to the program counter.

1 This FSM is identical to that of Figure 5.42 of Patterson & Hennessy save that LW and SW have been
replaced by LB and SB and instruction fetch now requires four cycles to load instructions through a byte-
wide interface.

 4

We would like to include support for the ADDI instruction in our processor. Consult
Patterson & Hennessy if you are rusty on the instruction. Mark up the copy of the FSM
diagram at the end of this lab with additional states to handle ADDI. Then edit the
Verilog to add your new state transitions and outputs. If you are using WordPad, be
careful that it does not append an undesired .txt to the end of the filename!

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst =0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch

Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'L B ') or (Op = 'S B ') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
'J

')

(O
p

=
'S

B
')

(O
p

=
'L

B
')

7

0

4

121195

1086

Start

MemRead
ALUSrcA = 0

IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

1
MemRead

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

2
MemRead

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

3

Figure 3: Controller FSM

4. Controller Synthesis

Synopsys sells a CAD tool called Design Analyzer that is widely used in industry to
synthesize Verilog onto a library of logic gates. If you have access to Design Analyzer,
you will synthesize your Verilog code from the previous part. The result of synthesis is a
gate-level netlist in VHDL suitable for the place & route tool in Electric. If you do not
have access, your instructor can provide the controller_sol.vhdl file and you can skip this
step.

Use the Setup • Defaults command to setup your libraries. You will need to include the
Synopsys database file std_mudd.db defining the standard cell library. Set the search path
to include the path to the std_mudd.db library as well as the other paths already there.
For example, if the std_mudd.db file is at \\Charlie\Courses\Eng\E158\Labs\std_mudd.db
and the J drive is mapped to \\Charlie\Courses, add J:/Eng/E158/Labs to the search path.
Set the link library and target library to std_mudd.db and the symbol library to

 5

generic.sdb. These defaults instruct Synopsys to map your Verilog controller onto the
gates available in the std_mudd library.2

Use the File • Read to read your controller_xx.v file. Check in the command window for
any errors indicating a mistake in your addi code. You should see two 4-bit latch
memory devices inferred comprising the two latches in the state register. You should
also see messages for each case statement. In some case statements, the //
synopsys full_case directive is used to tell Synopsys that the code considers all
logically possible cases and that therefore no gates are required to handle a default case.

Click on the controller in the design analyzer window and choose Tools • Design
optimization. Select High effort and press ok to synthesize. Check to ensure there are no
errors in the Command Window; you may see spurious warnings about improper octal
values. Then double-click on the controller and descend twice to look at what was
produced. You will see a tangle of gates implementing the MIPS controller. If you
discovered you had a bug in your Verilog design, you would simply fix the Verilog, then
resynthesize to produce a new gate-level implementation.

Finally, you will need to save the netlist describing the gates and their interconnections.
The Electric Silicon Compiler wants a netlist in VHDL format. Therefore, use the File •
Save As command to save in the format VHDL with the name controller_xx.vhdl.

5. Controller Place and Route

We will use the Queens University Interactive Silicon Compiler feature in Electric to
place and route the controller specified with the VHDL netlist. This is a very primitive
place and route tool, but will nevertheless save considerable manual effort. While in the
mocmos technology, select Tools • Silicon Compiler • Silicon Compiler Options. Set the
following options:

2 If you wished to add more gates to the std_mudd.db Synopsys library database such as a 4-input nand,
you would edit the std_mudd.lib file in the class directory to add additional gates. The gates in the library
are presently modeled off LSI Logic’s lsi_10k library provided with the Synopsys tools. Once you had
added new gates to the .lib file, you would use the Library Compiler program (LC GUI among the
Synopsys tools) to enter the following commands:

read_lib “std_mudd.lib” (expect to get some warnings about unspecified attributes)
write_lib std_mudd –output std_mudd.db

The output may appear in the Synopsys directory.

 6

Horizontal routing arc: Metal1
Horizontal wire width: 4
Vertical routing arc: Metal2
Vertical wire width: 4
Power wire width: 8
Main power wire width: 20
Main power arc: Vertical arc
P-well height: 38
P-well offset: 0.5
N-well height: 38
N-well offset: 0.5
Via size: 4
Minimum metal spacing: 4
Feed-through size: 12
Min Port distance: 8
Min Active distance: -4
Number of rows of cells: 2

Look at the controller_xx.vhdl VHDL file in a text editor. After the library and use
declarations, you will see the entity statement for the controller. This defines the
inputs and outputs of the controller. Next, you will see the architecture statement
for the controller. Within the architecture are component statements defining all the
standard cells referenced within the controller. Next are a set of signal declarations
defining the signals within the module. After the begin statement are a series of gate
instantiations in which gates are connected together.

Use Windows • Text Options to set the text editor to point and click. Create a new facet
named controller of view VHDL. Copy the controller_xx.vhdl file from the text editor
and paste it into the new facet. The Silicon Compiler understands a very limited subset of
VHDL, so you will have to make some changes to the VHDL netlist.

Specifically, Electric also does not understand the <= assign statement syntax, so we will
have to avoid any signal renaming with such assignments. Look at the one or more
assignments immediately after the begin statement such as

 irwrite0 <= irwrite0_port

The exact list and number of signals to edit depends on how you coded your Verilog and
how Synopsys happened to synthesize it. Each of these outputs will also appear in the
signal statement. Delete them from that statement. For each of these outputs, use Edit
• Special Function • Find Text to search and replace the signal name with _port with the
same name without. For example, search for irwrite0_port and replace all instances of it
with irwrite0 throughout the code. When you have replaced all the renamed signals, also
delete the <= assignments that come just after the begin statement.

 7

Use the Tools • Silicon Compiler • Get Network for Current Facet command to read the
VHDL netlist. Open the controller{net-quisc} command file and look at how the VHDL
was translated into a series of commands to create, connect, and name cells. Use the
Tools • Silicon Compiler • Do Placement, Tools • Silicon Compiler • Do Routing, and
Tools • Silicon Compiler • Make Electric Layout commands to place, route, and generate
layout. Look at the resulting controller layout facet. You will see two rows of standard
cells with all the necessary connections. Vias for metal2 connections to the inputs and
outputs are provided.

Unfortunately, the Silicon Compiler is not very smart about separating metal2 lines.
When you run hierarchical DRC, you may find some metal2 lines are too close together.
Fix any errors you find. Run the Electrical Rule Checker to ensure the wells are correct.

While looking at the layout, select View • Make Schematic. This will produce a
schematic to match the layout. Delete the vdd and gnd ports that were created in the
schematic. Verify that Electric created the schematic correctly by using NCC on the
controller.

6. Controller Simulation

To verify that your controller works correctly, you can simulate it in IRSIM.
controller.cmd has been provided for you. Look it over to see how vectors and clock
commands are used. Look at the IRSIM Users Manual on the web page to understand the
syntax of these commands. Simulate the layout and correct any assertion violations you
may find.

7. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for the future.
2. What are the DRC, ERC, and NCC status of each block you designed: std_nand3,

alucontrol, controller?
3. A FSM diagram of your controller including the ADDI instruction
4. A printout of the alucontrol schematics and layout.
5. A printout of the alucontrol.cmd file with proper assertions. Does it simulate all

legal inputs without assertion failures?
6. Does your controller.cmd file simulate without assertion failures? If not, explain.

 8

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch

Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'L B ') or (Op = 'S B ') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
'J

')

(O
p

=
'S

B')

(O
p

=
'L

B
')

7

0

4

121195

1086

Start

MemRead
ALUSrcA = 0

IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

1
MemRead

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

2
MemRead

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

3

Mark up this FSM to add states to support the ADDI instruction.

