Introduction to CMOS VLSI Design

Lecture 4: DC & Transient Response

David Harris

Harvey Mudd College Spring 2004

Outline

- DC Response
- □ Logic Levels and Noise Margins
- □ Transient Response
- Delay Estimation

Activity

- If the width of a transistor increases, the current will decrease not change increase
- If the length of a transistor increases, the current will increase decrease not change
- If the supply voltage of a chip increases, the maximum 3) transistor current will
 - not change decrease increase
- If the width of a transistor increases, its gate capacitance will not change decrease increase
- If the length of a transistor increases, its gate capacitance will decrease increase not change
- If the supply voltage of a chip increases, the gate capacitance of each transistor will
 - decrease not change increase

Activity

If the width of a transistor increases, the current will decrease increase not change

If the length of a transistor increases, the current will increase decrease not change

If the supply voltage of a chip increases, the maximum 3) transistor current will

not change decrease increase

If the width of a transistor increases, its gate capacitance will decrease not change increase

If the length of a transistor increases, its gate capacitance will increase decrease not change

If the supply voltage of a chip increases, the gate capacitance of each transistor will

decrease not change increase

DC Response

- ☐ DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter

$$-$$
 When $V_{in} = 0$

$$\rightarrow$$
 $V_{out} = V_{DD}$

- When
$$V_{in} = V_{DD}$$

$$\rightarrow$$
 $V_{out} = 0$

 In between, V_{out} depends on transistor size and current

- By KCL, must settle such that

$$I_{dsn} = |I_{dsp}|$$

- We could solve equations
- But graphical solution gives more insight

Transistor Operation

- ☐ Current depends on region of transistor behavior
- ☐ For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

Cutoff	Linear	Saturated
V _{gsn} <	V _{gsn} >	V _{gsn} >
	V _{dsn} <	V _{dsn} >

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$

$$V_{gsn} = V_{in}$$

$$V_{dsn} = V_{out}$$

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} < V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$

$$V_{gsn} = V_{in}$$

$$V_{dsn} = V_{out}$$

Cutoff	Linear	Saturated
V _{gsp} >	V _{gsp} <	V _{gsp} <
	V _{dsp} >	V _{dsp} <

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

I-V Characteristics

 \square Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. Vout, Vin

4: DC and Transient Response

CMOS VLSI Design

Slide 16

- \Box For a given V_{in} :
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where |currents| are equal in

$$\Box$$
 $V_{in} = 0$

$$\Box$$
 $V_{in} = 0.4 V_{DD}$

$$\Box$$
 $V_{in} = 0.6V_{DD}$

4: DC and Transient Response

CMOS VLSI Design

Slide 21

$$\Box$$
 $V_{in} = 0.8 V_{DD}$

4: DC and Transient Response

CMOS VLSI Design

$$\Box$$
 $V_{in} = V_{DD}$

Load Line Summary

DC Transfer Curve

☐ Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

□ Revisit transistor operating regions

Region	nMOS	pMOS
Α		
В		
С		
D		
E		

Operating Regions

□ Revisit transistor operating regions

Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

Beta Ratio

- \Box If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- ☐ Called *skewed* gate
- Other gates: collapse into equivalent inverter

Noise Margins

☐ How much noise can a gate input see before it does not recognize the input?

Logic Levels

☐ To maximize noise margins, select logic levels at

Logic Levels

- ☐ To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

Transient Response

- ☐ *DC analysis* tells us V_{out} if V_{in} is constant
- ☐ Transient analysis tells us V_{out}(t) if V_{in}(t) changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

☐ Ex: find step response of inverter driving load cap

$$V_{in}(t) = V_{out}(t < t_0) = \frac{dV_{out}(t)}{dt} = \frac{dV_{out}(t)}{dt}$$

□ Ex: find step response of inverter driving load cap

$$\begin{aligned} & V_{in}(t) = u(t - t_0)V_{DD} \\ & V_{out}(t < t_0) = \\ & \frac{dV_{out}(t)}{dt} = \end{aligned}$$

☐ Ex: find step response of inverter driving load cap

$$\begin{aligned} & V_{in}(t) = u(t - t_0)V_{DD} \\ & V_{out}(t < t_0) = V_{DD} \\ & \frac{dV_{out}(t)}{dt} = \end{aligned}$$

☐ Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} t \leq t_0 \\ V_{out} > V_{DD} - V_t \\ V_{out} < V_{DD} - V_t \end{cases}$$

Inverter Step Response

☐ Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \leq t_0 \\ \frac{b}{2} \left(V_{DD} - V \right)^2 & V_{out} > V_{DD} - V_t \\ b \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Inverter Step Response

☐ Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \leq t_0 \\ \frac{b}{2} \left(V_{DD} - V \right)^2 & V_{out} > V_{DD} - V_t \\ b \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Delay Definitions

- \Box t_{pdr}
- ☐ t_{pdf}:
- \Box t_{pd}
- \Box $\mathsf{t_r}$
- ☐ t_f: fall time

Delay Definitions

- □ t_{pdr}: rising propagation delay
 - From input to rising output crossing $V_{DD}/2$
- □ t_{pdf}: falling propagation delay
 - From input to falling output crossing $V_{DD}/2$
- □ t_{pd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- \Box **t**_r: rise time
 - From output crossing 0.2 $V_{\rm DD}$ to 0.8 $V_{\rm DD}$
- □ t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions

- □ t_{cdr}: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- □ t_{cdf}: falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- □ t_{cd}: average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$

Simulated Inverter Delay

- □ Solving differential equations by hand is too hard
- ☐ SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- □ The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- ☐ Characterize transistors by finding their effective R
 - Depends on average current as gate switches

RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

☐ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

□ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

□ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

□ Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

□ Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- ☐ Pullup or pulldown network modeled as RC ladder
- □ Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i$$

$$= R_1 C_1 + (R_1 + R_2) C_2 + \dots + (R_1 + R_2 + \dots + R_N) C_N$$

☐ Estimate worst-case rising and falling delay of 2-input NAND driving *h* identical gates.

Estimate rising and falling propagation delays of a 2input NAND driving h identical gates.

□ Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

Estimate rising and falling propagation delays of a 2input NAND driving h identical gates.

Estimate rising and falling propagation delays of a 2input NAND driving h identical gates.

□ Estimate rising and falling propagation delays of a 2input NAND driving h identical gates.

□ Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

$$t_{pdf} = (2C)\left(\frac{R}{2}\right) + \left[(6+4h)C\right]\left(\frac{R}{2} + \frac{R}{2}\right)$$

$$= (7+4h)RC$$

Delay Components

- Delay has two parts
 - Parasitic delay
 - 6 or 7 RC
 - Independent of load
 - Effort delay
 - 4h RC
 - Proportional to load capacitance

Contamination Delay

- □ Best-case (contamination) delay can be substantially less than propagation delay.
- ☐ Ex: If both inputs fall simultaneously

Diffusion Capacitance

- we assumed contacted diffusion on every s / d.
- □ Good layout minimizes diffusion area
- ☐ Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Layout Comparison

■ Which layout is better?

