Introduction to CMOS VLSI Design

Lecture 3: CMOS Transistor Theory

David Harris

Harvey Mudd College Spring 2004

Outline

- Introduction
- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- Gate and Diffusion Capacitance
- Pass Transistors
- RC Delay Models

Introduction

- □ So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance
 - $I = C (\Delta V / \Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed
- Also explore what a "degraded level" really means

MOS Capacitor

- □ Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion

3: CMOS Transistor Theory

Terminal Voltages

Mode of operation depends on V_g , V_d , V_s

$$- V_{gs} = V_g - V_s$$

$$- V_{gd} = V_g - V_d$$

$$- V_{ds} = V_d - V_s = V_{gs} - V_{gd}$$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- □ nMOS body is grounded. First assume source is 0 too.
- □ Three regions of operation
 - Cutoff
 - Linear
 - Saturation

nMOS Cutoff

No channel

 $\Box I_{ds} = 0$

3: CMOS Transistor Theory

CMOS VLSI Design

nMOS Linear

- Channel forms
- Current flows from d to s
 - $-e^{-}$ from s to d
- $\Box I_{ds} \text{ increases with } V_{ds}$
- Similar to linear resistor

nMOS Saturation

- □ Channel pinches off
- $\Box I_{ds} independent of V_{ds}$
- We say current saturates
- Similar to current source

I-V Characteristics

- □ In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Q_{channel} =

3: CMOS Transistor Theory

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain

 $\mathbf{I} v =$

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box v = \mu E$ μ called mobility

3: CMOS Transistor Theory

F =

CMOS VLSI Design

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box v = \mu E$ μ called mobility
- $\Box E = V_{ds}/L$

□ Time for carrier to cross channel:

- *t* =

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box v = \mu E$ μ called mobility
- $\Box \quad \mathsf{E} = \mathsf{V}_{\mathsf{ds}}/\mathsf{L}$

□ Time for carrier to cross channel:

$$-t = L / v$$

nMOS Linear I-V

Now we know

- How much charge $Q_{channel}$ is in the channel
- How much time t each carrier takes to cross

 $I_{ds} =$

3: CMOS Transistor Theory

nMOS Linear I-V

Now we know

- How much charge $Q_{channel}$ is in the channel
- How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

3: CMOS Transistor Theory

If V_{gd} < V_t, channel pinches off near drain When V_{ds} > V_{dsat} = V_{gs} - V_t Now drain voltage no longer increases current

 $I_{ds} =$

3: CMOS Transistor Theory

CMOS VLSI Design

If V_{gd} < V_t, channel pinches off near drain When V_{ds} > V_{dsat} = V_{gs} - V_t Now drain voltage no longer increases current

$$I_{ds} = \boldsymbol{b} \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

3: CMOS Transistor Theory

CMOS VLSI Design

nMOS Saturation I-V

□ If $V_{gd} < V_t$, channel pinches off near drain - When $V_{ds} > V_{dsat} = V_{gs} - V_t$

Now drain voltage no longer increases current

$$I_{ds} = \boldsymbol{b} \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\boldsymbol{b}}{2} \left(V_{gs} - V_t \right)^2$$

Example \Box We will be using a 0.6 μ m process for your project From AMI Semiconductor $-t_{ox} = 100 \text{ Å}$ 2.5 $V_{qs} = 5$ $- \mu = 350 \text{ cm}^2/\text{V*s}$ 2 $-V_{t} = 0.7 V$ 1.5 $V_{gs} = 4$ l_{ds} (mA) \Box Plot I_{ds} vs. V_{ds} 1 $V_{as} = 3$ $-V_{gs} = 0, 1, 2, 3, 4, 5$ 0.5 $V_{gs} = 2$ $V_{gs} = 1$ - Use W/L = 4/2 λ 0 4 2 3 5 0 V_{ds} $\boldsymbol{b} = \boldsymbol{m}C_{ox}\frac{W}{L} = (350) \left(\frac{3.9 \bullet 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}}\right) \left(\frac{W}{L}\right) = 120 \frac{W}{L} \boldsymbol{m}A/V^2$

3: CMOS Transistor Theory

CMOS VLSI Design

pMOS I-V

- □ All dopings and voltages are inverted for pMOS
- □ Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm²/V*s in AMI 0.6 μm process
- □ Thus pMOS must be wider to provide same current
 - In this class, assume μ_n / μ_p = 2
 - *** plot I-V here

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

Diffusion Capacitance

- $\Box C_{sb}, C_{db}$
- Undesirable, called parasitic capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - $-\frac{1}{2}C_{g}$ for uncontacted
 - Varies with process

3: CMOS Transistor Theory

CMOS VLSI Design

Pass Transistors

- We have assumed source is grounded
- $\Box \quad \text{What if source} > 0?$
 - e.g. pass transistor passing V_{DD}

Pass Transistors

- We have assumed source is grounded
- $\Box \quad \text{What if source} > 0?$
 - e.g. pass transistor passing V_{DD}

$$\Box V_{g} = V_{DD}$$

$$- \text{ If } V_{s} > V_{DD} - V_{t}, V_{gs} < V_{t}$$

- Hence transistor would turn itself off

- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
 - pMOS pass transistors pull no lower than V_{tp}

Pass Transistor Ckts

3: CMOS Transistor Theory

CMOS VLSI Design

Effective Resistance

- □ Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- □ Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- □ Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

RC Values

Capacitance

 $-C = C_g = C_s = C_d = 2 \text{ fF}/\mu\text{m}$ of gate width

- Values similar across many processes

- Resistance
 - R \approx 6 KΩ*µm in 0.6um process
 - Improves with shorter channel lengths
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - Or maybe 1 μm wide device
 - Doesn't matter as long as you are consistent

Inverter Delay Estimate

□ Estimate the delay of a fanout-of-1 inverter

3: CMOS Transistor Theory

CMOS VLSI Design

