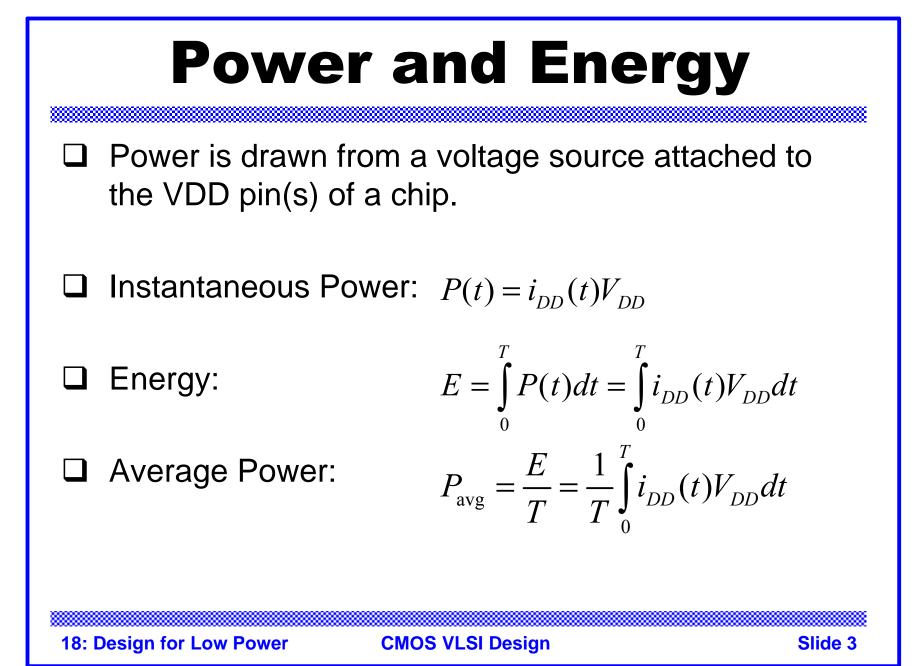

Introduction to CMOS VLSI Design

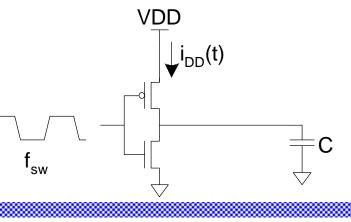
Lecture 18: Design for Low Power

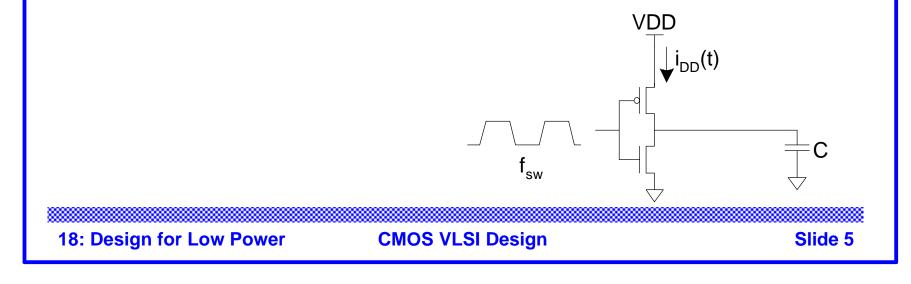
David Harris



Harvey Mudd College Spring 2004

Outline


- Power and Energy
- Dynamic Power
- Static Power
- Low Power Design


Dynamic Power

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
- **On rising output, charge** $Q = CV_{DD}$ **is required**
- On falling output, charge is dumped to GND
- This repeats Tf_{sw} times over an interval of T

Dynamic Power Cont.

 $P_{\rm dynamic}$

Activity Factor

- □ Suppose the system clock frequency = f
- \Box Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 - Dynamic gates:
 - Switch either 0 or 2 times per cycle, $\alpha = \frac{1}{2}$
 - Static gates:
 - Depends on design, but typically $\alpha = 0.1$

Dynamic power: $P_{\text{dynamic}} = \mathbf{a} C V_{DD}^{2} f$

18: Design for Low Power

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output

Example

- 200 Mtransistor chip
 - 20M logic transistors
 - Average width: 12 λ
 - 180M memory transistors
 - Average width: 4 λ
 - 1.2 V 100 nm process
 - $C_g = 2 \text{ fF}/\mu m$

Dynamic Example

- □ Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks!)
- Estimate dynamic power consumption per MHz. Neglect wire capacitance and short-circuit current.

Static Power

- Static power is consumed even when chip is quiescent.
 - Ratioed circuits burn power in fight between ON transistors
 - Leakage draws power from nominally OFF devices

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv_T}} \left[1 - e^{\frac{-V_{ds}}{v_T}} \right]$$

$$V_t = V_{t0} - \boldsymbol{h}V_{ds} + \boldsymbol{g}\left(\sqrt{\boldsymbol{f}_s + V_{sb}} - \sqrt{\boldsymbol{f}_s}\right)$$

18: Design for Low Power

CMOS VLSI Design

Slide 12

Ratio Example

□ The chip contains a 32 word x 48 bit ROM

- Uses pseudo-nMOS decoder and bitline pullups
- On average, one wordline and 24 bitlines are high
- □ Find static power drawn by the ROM

$$-\beta = 75 \ \mu \text{A/V}^2$$

$$-V_{tp} = -0.4V$$

Leakage Example

- The process has two threshold voltages and two oxide thicknesses.
- □ Subthreshold leakage:
 - 20 nA/ μm for low V_t
 - 0.02 nA/ μm for high V_t
- Gate leakage:
 - 3 nA/ μm for thin oxide
 - 0.002 nA/ μm for thick oxide
- Memories use low-leakage transistors everywhere
- ☐ Gates use low-leakage transistors on 80% of logic

Leakage Example Cont.

G Estimate static power:

18: Design for Low Power

CMOS VLSI Design

Slide 16

Low Power Design

- □ Reduce dynamic power
 - α:
 - C:
 - $-V_{DD}$:
 - f:
- Reduce static power