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Outline
q Memory Arrays
q SRAM Architecture

– SRAM Cell
– Decoders
– Column Circuitry
– Multiple Ports

q Serial Access Memories
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Array Architecture
q 2n words of 2m bits each
q If n >> m, fold by 2k into fewer rows of more columns

q Good regularity – easy to design
q Very high density if good cells are used

row
 decoder

column
decoder

n

n-k
k

2m bits

column
circuitry

bitline conditioning

memory cells:
2n-k rows x
2m+k columns

bitlines

wordlines
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12T SRAM Cell
q Basic building block: SRAM Cell

– Holds one bit of information, like a latch
– Must be read and written

q 12-transistor (12T) SRAM cell
– Use a simple latch connected to bitline

bit

write

write_b

read

read_b
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6T SRAM Cell
q Cell size accounts for most of array size

– Reduce cell size at expense of complexity
q 6T SRAM Cell

– Used in most commercial chips
– Data stored in cross-coupled inverters

q Read:
– Precharge bit, bit_b
– Raise wordline

q Write:
– Drive data onto bit, bit_b
– Raise wordline

bit bit_b

word
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SRAM Read
q Precharge both bitlines high
q Then turn on wordline
q One of the two bitlines will be pulled down by the cell
q Ex: A = 0, A_b = 1

– bit discharges, bit_b stays high
– But A bumps up slightly

q Read stability
– A must not flip

bit bit_b
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SRAM Read
q Precharge both bitlines high
q Then turn on wordline
q One of the two bitlines will be pulled down by the cell
q Ex: A = 0, A_b = 1

– bit discharges, bit_b stays high
– But A bumps up slightly

q Read stability
– A must not flip
– N1 >> N2

bit bit_b
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SRAM Write
q Drive one bitline high, the other low
q Then turn on wordline
q Bitlines overpower cell with new value
q Ex: A = 0, A_b = 1, bit = 1, bit_b = 0

– Force A_b low, then A rises high
q Writability

– Must overpower feedback inverter
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SRAM Write
q Drive one bitline high, the other low
q Then turn on wordline
q Bitlines overpower cell with new value
q Ex: A = 0, A_b = 1, bit = 1, bit_b = 0

– Force A_b low, then A rises high
q Writability

– Must overpower feedback inverter
– N2 >> P1
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SRAM Sizing
q High bitlines must not overpower inverters during 

reads
q But low bitlines must write new value into cell

bit bit_b

 med

A

weak

strong

med

A_b

word
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SRAM Column Example
Read Write

H H
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word_q1
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SRAM Layout
q Cell size is critical
q Tile cells sharing VDD, GND, bitline contacts

VDD

GND GNDBIT BIT_B

WORD

Cell boundary
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Decoders
q n:2n decoder consists of 2n n-input AND gates

– One needed for each row of memory
– Build AND from NAND or NOR gates

Static CMOS Pseudo-nMOS

word0

word1

word2

word3
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A1
word
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Decoder Layout
q Decoders must be pitch-matched to SRAM cell

– Requires very skinny gates

GND

VDD

word

buffer inverterNAND gate

A0A0A1A2A3 A2A3 A1
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Large Decoders
q For n > 4, NAND gates become slow

– Break large gates into multiple smaller gates

word0

word1

word2

word3

word15

A0A1A2A3
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Predecoding
q Many of these gates are redundant

– Factor out common
gates into predecoder

– Saves area
– Same path effort

A0

A1

A2

A3

word1

word2

word3

word15

word0

1 of 4 hot
predecoded lines

predecoders
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Column Circuitry
q Some circuitry is required for each column

– Bitline conditioning
– Sense amplifiers
– Column multiplexing
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Bitline Conditioning
q Precharge bitlines high before reads

q Equalize bitlines to minimize voltage difference 
when using sense amplifiers

φ
bit bit_b

φ

bit bit_b
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Sense Amplifiers
q Bitlines have many cells attached

– Ex: 32-kbit SRAM has 256 rows x 128 cols
– 128 cells on each bitline

q tpd ∝ (C/I) ∆V
– Even with shared diffusion contacts, 64C of 

diffusion capacitance (big C)
– Discharged slowly through small transistors 

(small I)
q Sense amplifiers are triggered on small voltage 

swing (reduce ∆V)
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Differential Pair Amp
q Differential pair requires no clock
q But always dissipates static power

bit bit_b
sense_b sense

N1 N2

N3

P1 P2
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Clocked Sense Amp
q Clocked sense amp saves power
q Requires sense_clk after enough bitline swing
q Isolation transistors cut off large bitline capacitance

bit_bbit

sense sense_b

sense_clk isolation
transistors

regenerative
feedback
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Twisted Bitlines
q Sense amplifiers also amplify noise

– Coupling noise is severe in modern processes
– Try to couple equally onto bit and bit_b
– Done by twisting bitlines

b0 b0_b b1 b1_b b2 b2_b b3 b3_b
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Column Multiplexing
q Recall that array may be folded for good aspect ratio
q Ex: 2 kword x 16 folded into 256 rows x 128 columns

– Must select 16 output bits from the 128 columns
– Requires 16 8:1 column multiplexers
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Tree Decoder Mux
q Column mux can use pass transistors

– Use nMOS only, precharge outputs
q One design is to use k series transistors for 2k:1 mux

– No external decoder logic needed

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7
A0

A0

A1

A1

A2

A2

Y Y
to sense amps and write circuits
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Single Pass-Gate Mux
q Or eliminate series transistors with separate decoder

A0A1

B0 B1 B2 B3

Y
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Ex: 2-way Muxed SRAM

More
Cells

word_q1

write0_q1

φ2

More
Cells

A0

A0

φ2

data_v1

write1_q1
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Multiple Ports
q We have considered single-ported SRAM

– One read or one write on each cycle
q Multiported SRAM are needed for register files
q Examples:

– Multicycle MIPS must read two sources or write a 
result on some cycles

– Pipelined MIPS must read two sources and write 
a third result each cycle

– Superscalar MIPS must read and write many 
sources and results each cycle
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Dual-Ported SRAM
q Simple dual-ported SRAM

– Two independent single-ended reads
– Or one differential write

q Do two reads and one write by time multiplexing
– Read during ph1, write during ph2

bit bit_b

wordB
wordA
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Multi-Ported SRAM
q Adding more access transistors hurts read stability
q Multiported SRAM isolates reads from state node
q Single-ended design minimizes number of bitlines

bA

wordB
wordA

wordD
wordC

wordF
wordE

wordG

bB bC

write
circuits

read
circuits

bD bE bF bG
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Serial Access Memories
q Serial access memories do not use an address

– Shift Registers
– Tapped Delay Lines
– Serial In Parallel Out (SIPO)
– Parallel In Serial Out (PISO)
– Queues (FIFO, LIFO)
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Shift Register
q Shift registers store and delay data
q Simple design: cascade of registers

– Watch your hold times!

clk

Din Dout
8
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Denser Shift Registers
q Flip-flops aren’t very area-efficient
q For large shift registers, keep data in SRAM instead
q Move read/write pointers to RAM rather than data

– Initialize read address to first entry, write to last
– Increment address on each cycle

Din

Dout

clk

counter counter

reset

00...00

11...11

readaddr

writeaddr

dual-ported
SRAM
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Tapped Delay Line
q A tapped delay line is a shift register with a 

programmable number of stages
q Set number of stages with delay controls to mux

– Ex: 0 – 63 stages of delay

S
R

32

clk

Din

delay5

S
R

16

delay4

S
R

8

delay3

S
R

4

delay2

S
R

2

delay1

S
R

1

delay0

Dout



13: SRAM Slide 35CMOS VLSI Design

Serial In Parallel Out
q 1-bit shift register reads in serial data

– After N steps, presents N-bit parallel output

clk

P0 P1 P2 P3

Sin
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Parallel In Serial Out
q Load all N bits in parallel when shift = 0

– Then shift one bit out per cycle

clk
shift/load

P0 P1 P2 P3

Sout
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Queues
q Queues allow data to be read and written at different 

rates.
q Read and write each use their own clock, data
q Queue indicates whether it is full or empty
q Build with SRAM and read/write counters (pointers)

Queue

WriteClk

WriteData

FULL

ReadClk

ReadData

EMPTY
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FIFO, LIFO Queues
q First In First Out (FIFO)

– Initialize read and write pointers to first element
– Queue is EMPTY
– On write, increment write pointer
– If write almost catches read, Queue is FULL
– On read, increment read pointer

q Last In First Out (LIFO)
– Also called a stack
– Use a single stack pointer for read and write


